Электронное строение родия. Электронные формулы химических элементов

    Задача составления электронной формулы химического элемента не самая простая.

    Итак, алгоритм составления электронных формул элементов такой:

    • Сначала записываем знак хим. элемента, где внизу слева от знака указываем его порядковый номер.
    • Далее по номеру периода (из которого элемент) определяем число энергетических уровней и рисуем рядом со знаком хим-го элемента такое количество дуг.
    • Затем по номеру группы число электронов на внешнем уровне, записываем под дугой.
    • На 1 - ом уровне максимально возможно 2е, на втором уже 8, на третьем - целых 18. Начинаем ставить числа под соответствующими дугами.
    • Число электронов на предпоследнем уровне нужно рассчитывать так: из порядкового номера элемента отнимается число уже проставленных электронов.
    • Остается превратить нашу схему в электронную формулу:

    Вот электронные формулы некоторых химических элементов:

    1. Пишем химический элемент и его порядковый номер.Номер показывает кол-во электронов в атоме.
    2. Составляем формулу. Для этого нужно узнать количество энергетических уровней, основой для определения берется номер периода элемента.
    3. Разбиваем уровни на под уровни.

    Ниже можно увидеть пример, как правильно составлять электронные формулы химических элементов.

  • Составить электронные формулы химических элементов нужно таким способом: нужно посмотреть номер элемента в таблице Менделеева, таким образом узнать сколько у него электронов. Затем нужно узнать количество уровней, который равен периоду. Затем пишутся подуровни и они заполняются:

    Первым делом вам надо определить число атомов согласно таблицы Менделеева.

    Для составления электронной формулы вам понадобится периодическая система Менделеева. Находите ваш химический элемент там и смотрите период - он будет равен числу энергетических уровней. Номер группы будет соответствовать численно количеству электронов на последнем уровне. Номер элемента будет количественно равен числу его электронов.Так же вам четко надо знать, что на первом уровне есть максимум 2 электрона, на втором - 8, на третьем - 18.

    Это основные моменты. Ко всему прочему в интернете (в том числе и нашем сайте) вы можете найти информацию с уже готовой электронной формулой для каждого элемента, так вы сможете проверить себя.

    Составление электронных формул химических элементов очень даже сложный процесс, без специальных таблиц тут не обойтись, да и формул нужно применять целую кучу. Вкратце для составления нужно пройти по этим этапам:

    Нужно составить орбитальную диаграмму, в которой будет понятие отличия электронов друг от друга. В диаграмме выделяются орбитали и электроны.

    Электроны заполняются по уровням, снизу в верх и имеют несколько подуровней.

    Итак вначале узнам общее количество электронов заданного атома.

    Заполняем формулу по определнной схеме и записываем - это и будет электронной формулой.

    Например у Азота эта формула выглядит так, сначала разбираемся с электронами:

    И записываем формулу:

    Чтобы понять принцип составления электронной формулы химического элемента , для начала нужно определить по номеру в таблице Менделеева общее количество электронов в атоме. После этого нужно определить число энергетических уровней, взяв за основу номер периода, в котором находится элемент.

    После этого уровни разбиваются на подуровни, которые заполняют электронами, основываясь на Принципе наименьшей энергии.

    Можно проверить правильность своих рассуждений, заглянув, например, сюда .

    Составив электронную формулу химического элемента, можно узнать, сколько электронов и электронных слоев в конкретном атоме, а также порядок их распределения по слоям.

    Для начала определяем порядковый номер элемента по таблице Менделеева, он соответствует числу электронов. Количество электронных слоев указывает на номер периода, а количество число электронов на последнем слое атома соответствует номеру группы.

    • сначала заполняем s-подуровень, а потом р-, d- b f-подуровни;
    • по правилу Клечковского электроны заполняют орбитали в порядке возрастания энергии этих орбиталей;
    • по правилу Хунда электроны в пределах одного подуровня занимают свободные орбитали по одному, а потом образуют пары;
    • по принципу Паули на одной орбитали больше 2 электронов не бывает.
  • Электронная формула химического элемента показывает сколько электронных слоев и сколько электронов содержится в атоме и как они распределены по слоям.

    Чтобы составить электронную формулу химического элемента, нужно заглянуть в таблицу Менделеева и использовать полученные сведения для данного элемента. Порядковый номер элемента в таблице Менделеева соответствует количеству электронов в атоме. Число электронных слоев соответствует номеру периода, число электронов на последнем электронном слое соответствует номеру группы.

    Необходимо помнить, что на первом слое находится максимум 2 электрона 1s2, на втором - максимум 8 (два s и шесть р: 2s2 2p6), на третьем - максимум 18 (два s, шесть p, и десять d: 3s2 3p6 3d10).

    Например, электронная формула углерода: С 1s2 2s2 2p2 (порядковый номер 6, номер периода 2, номер группы 4).

    Электронная формула натрия: Na 1s2 2s2 2p6 3s1 (порядковый номер 11, номер периода 3, номер группы 1).

    Для проверки правильности написания электронной формулы можно заглянуть на сайт www.alhimikov.net.

    Составление электронной формулы хим.элементов на первый взгляд может показаться довольно сложным занятием, однако все станет понятно, если придерживаться следующей схемы:

    • сперва пишем орбитали
    • вставляем перед орбиталями числа, которые указывают номер энергетического уровня. Не забываем формулу для определения максимального количества электронов на энергетическом уровне: N=2n2

    А как узнать число энергетических уровней? Просто посмотрите таблицу Менделеева: это число равно номеру периода, в котором данный элемент находится.

    • над значком орбитали пишем число, которое обозначает количество электронов, которые находятся на этой орбитали.

    Например, электронная формула скандия будет выглядеть таким образом.

Расположение электронов на энергетических оболочках или уровнях записывают с помощью электронных формул химических элементов. Электронные формулы или конфигурации помогают представить структуру атома элемента.

Строение атома

Атомы всех элементов состоят из положительно заряженного ядра и отрицательно заряженных электронов, которые располагаются вокруг ядра.

Электроны находятся на разных энергетических уровнях. Чем дальше электрон находится от ядра, тем большей энергией он обладает. Размер энергетического уровня определяется размером атомной орбитали или орбитального облака. Это пространство, в котором движется электрон.

Рис. 1. Общее строение атома.

Орбитали могут иметь разную геометрическую конфигурацию:

  • s-орбитали - сферические;
  • р-, d и f-орбитали - гантелеобразные, лежащие в разных плоскостях.

На первом энергетическом уровне любого атома всегда располагается s-орбиталь с двумя электронами (исключение - водород). Начиная со второго уровня, на одном уровне находятся s- и р-орбитали.

Рис. 2. s-, р-, d и f-орбитали.

Орбитали существуют вне зависимости от нахождения на них электронов и могут быть заполненными или вакантными.

Запись формулы

Электронные конфигурации атомов химических элементов записываются по следующим принципам:

  • каждому энергетическому уровню соответствует порядковый номер, обозначаемый арабской цифрой;
  • за номером следует буква, означающая орбиталь;
  • над буквой пишется верхний индекс, соответствующий количеству электронов на орбитали.

Примеры записи:

  • кальций -

    1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 ;

  • кислород -

    1s 2 2s 2 2p 4 ;

  • углерод -

    1s 2 2s 2 2p 2 .

Записать электронную формулу помогает таблица Менделеева. Количеству энергетических уровней соответствует номер периода. На заряд атома и количество электронов указывает порядковый номер элемента. Номер группы показывает, сколько валентных электронов находится на внешнем уровне.

Для примера возьмём Na. Натрий находится в первой группе, в третьем периоде, под 11 номером. Это значит, что атом натрия имеет положительно заряженное ядро (содержит 11 протонов), вокруг которого на трёх энергетических уровнях располагается 11 электронов. На внешнем уровне находится один электрон.

Вспомним, что первый энергетический уровень содержит s-орбиталь с двумя электронами, а второй - s- и р-орбитали. Остаётся заполнить уровни и получить полную запись:

11 Na) 2) 8) 1 или 1s 2 2s 2 2p 6 3s 1 .

Для удобства созданы специальные таблицы электронных формул элемента. В длинной периодической таблице формулы также указываются в каждой клетке элемента.

Рис. 3. Таблица электронных формул.

Для краткости в квадратных скобках записаны элементы, электронная формула которых совпадает с началом формулы элемента. Например, электронная формула магния - 3s 2 , неона - 1s 2 2s 2 2p 6 . Следовательно, полная формула магния - 1s 2 2s 2 2p 6 3s 2 . 4.6 . Всего получено оценок: 195.

Строение электронных оболочек атомов элементов первых четырех периодов: $s-$, $p-$ и $d-$элементы. Электронная конфигурация атома. Основное и возбужденное состояние атомов

Понятие атом возникло еще в античном мире для обо значения частиц вещества. В переводе с греческого атом означает «неделимый».

Электроны

Ирландский физик Стони на основании опытов пришел к выводу, что электричество переносится мельчайшими частицами, существующими в атомах всех химических элементов. В $1891$ г. Стони предложил эти частицы назвать электронами , что по-гречески означает «янтарь».

Через несколько лет после того, как электрон получил свое название, английский физик Джозеф Томсон и французский физик Жан Перрен доказали, что электроны несут на себе отрицательный заряд. Это наименьший отрицательный заряд, который в химии принят за единицу $(–1)$. Томсон даже сумел определить скорость движения электрона (она равна скорости света - $300 000$ км/с) и массу электрона (она в $1836$ раз меньше массы атома водорода).

Томсон и Перрен соединяли полюса источника тока с двумя металлическими пластинами - катодом и анодом, впаянными в стеклянную трубку, из которой был откачан воздух. При подаче на пластины-электроды напряжения около 10 тысяч вольт в трубке вспыхивал светящийся разряд, а от катода (отрицательного полюса) к аноду (положительному полюсу) летели частицы, которые ученые сначала назвали катодными лучами , а затем выяснили, что это был поток электронов. Электроны, ударяясь об особые вещества, нанесенные, например, на экран телевизора, вызывают свечение.

Был сделан вывод: электроны вырываются из атомов материала, из которого сделан катод.

Свободные электроны или поток их можно получить и другими способами, например, при накаливании металлической проволоки или при падении света на металлы, образованные элементами главной подгруппы I группы таблицы Менделеева (например, цезий).

Состояние электронов в атоме

Под состоянием электрона в атоме понимают совокупность информации об энергии определенного электрона в пространстве , в котором он находится. Мы уже знаем, что электрон в атоме не имеет траектории движения, т.е. можно говорить лишь о вероятности нахождения его в пространстве вокруг ядра. Он может находиться в любой части этого пространства, окружающего ядро, и совокупность различных положений его рассматривают как электронное облако с определенной плотностью отрицательного заряда. Образно это можно представить себе так: если бы удалось через сотые или миллионные доли секунды сфотографировать положение электрона в атоме, как при фотофинише, то электрон на таких фотографиях был бы представлен в виде точки. При наложении бесчисленного множества таких фотографий получилась бы картина электронного облака с наибольшей плотностью там, где этих точек больше всего.

На рисунке показан «разрез» такой электронной плотности в атоме водорода, проходящей через ядро, а штриховой линией ограничена сфера, внутри которой вероятность обнаружения электрона составляет $90%$. Ближайший к ядру контур охватывает область пространства, в которой вероятность обнаружения электрона - $10%$, вероятность обнаружения электрона внутри второго от ядра контура составляет $20%$, внутри третьего - $≈30%$ и т.д. В состоянии электрона есть некая неопределенность. Чтобы охарактеризовать это особое состояние, немецкий физик В. Гейзенберг ввел понятие о принципе неопределенности , т.е. показал, что невозможно определить одновременно и точно энергию и местоположение электрона. Чем точнее определена энергия электрона, тем неопределеннее его положение, и наоборот, определив положение, нельзя определить энергию электрона. Область вероятности обнаружения электрона не имеет четких границ. Однако можно выделить пространство, где вероятность нахождения электрона максимальна.

Пространство вокруг атомного ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью.

В нем заключено приблизительно $90%$ электронного облака, и это означает, что около $90%$ времени электрон находится в этой части пространства. По форме различают $4$ известных ныне типа орбиталей, которые обозначаются латинскими буквами $s, p, d$ и $f$. Графическое изображение некоторых форм электронных орбиталей представлено на рисунке.

Важнейшей характеристикой движения электрона на определенной орбитали является энергия его связи с ядром. Электроны, обладающие близкими значениями энергии, образуют единый электронный слой , или энергетический уровень . Энергетические уровни нумеруют, начиная от ядра: $1, 2, 3, 4, 5, 6$ и $7$.

Целое число $n$, обозначающее номер энергетического уровня, называют главным квантовым числом.

Оно характеризует энергию электронов, занимающих данный энергетический уровень. Наименьшей энергией обладают электроны первого энергетического уровня, наиболее близкого к ядру. По сравнению с электронами первого уровня электроны последующих уровней характеризуются большим запасом энергии. Следовательно, наименее прочно связаны с ядром атома электроны внеш него уровня.

Число энергетических уровней (электронных слоев) в атоме равно номеру периода в системе Д. И. Менделеева, к которому принадлежит химический элемент: у атомов элементов первого периода один энергетический уровень; второго периода - два; седьмого периода - семь.

Наибольшее число электронов на энергетическом уровне определяется по формуле:

где $N$ - максимальное число электронов; $n$ - номер уровня, или главное квантовое число. Следовательно: на первом, ближайшем к ядру энергетическом уровне может находиться не более двух электронов; на втором - не более $8$; на третьем - не более $18$; на четвертом - не более $32$. А как, в свою очередь, устроены энергетические уровни (электронные слои)?

Начиная со второго энергетического уровня $(n = 2)$, каждый из уровней подразделяется на подуровни (подслои), несколько отличающиеся друг от друга энергией связи с ядром.

Число подуровней равно значению главного квантового числа: первый энергетический уровень имеет один под уровень; второй - два; третий - три; четвертый - четыре. Подуровни, в свою очередь, образованы орбиталями.

Каждому значению $n$ соответствует число орбиталей, равное $n^2$. По данным, представленным в таблице, можно проследить связь главного квантового числа $n$ с числом подуровней, типом и числом орбиталей и максимальным числом электронов на подуровне и уровне.

Главное квантовое число, типы и число орбиталей, максимальное число электронов на подуровнях и уровнях.

Энергетический уровень $(n)$ Число подуровней, равное $n$ Тип орбитали Число орбиталей Максимальное число электронов
в подуровне в уровне, равное $n^2$ в подуровне на уровне, равное $n^2$
$K(n=1)$ $1$ $1s$ $1$ $1$ $2$ $2$
$L(n=2)$ $2$ $2s$ $1$ $4$ $2$ $8$
$2p$ $3$ $6$
$M(n=3)$ $3$ $3s$ $1$ $9$ $2$ $18$
$3p$ $3$ $6$
$3d$ $5$ $10$
$N(n=4)$ $4$ $4s$ $1$ $16$ $2$ $32$
$4p$ $3$ $6$
$4d$ $5$ $10$
$4f$ $7$ $14$

Подуровни принято обозначать латинскими буквами, равно как и форму орбиталей, из которых они состоят: $s, p, d, f$. Так:

  • $s$-подуровень - первый, ближайший к ядру атома подуровень каждого энергетического уровня, состоит из одной $s$-орбитали;
  • $р$-подуровень - второй подуровень каждого, кроме первого, энергетического уровня, состоит из трех $р$-орбиталей;
  • $d$-подуровень - третий подуровень каждого, начиная с третьего, энергетического уровня, состоит из пяти $d$-орбиталей;
  • $f$-подуровень каждого, начиная с четвертого, энергетического уровня, состоит из семи $f$-орбиталей.

Ядро атома

Но не только электроны входят в состав атомов. Физик Анри Беккерель обнаружил, что природный минерал, содержащий соль урана, тоже испускает неведомое излучение, засвечивая фотопленки, закрытые от света. Это явление было названо радиоактивностью .

Различают три вида радиоактивных лучей:

  1. $α$-лучи, которые состоят из $α$-частиц, имеющих заряд в $2$ раза больше заряда электрона, но с положительным знаком, и массу в $4$ раза больше массы атома водорода;
  2. $β$-лучи представляют собой поток электронов;
  3. $γ$-лучи - электромагнитные волны с ничтожно малой массой, не несущие электрического заряда.

Следовательно, атом имеет сложное строение - состоит из положительно заряженного ядра и электронов.

Как же устроен атом?

В 1910 г. в Кембридже, близ Лондона, Эрнест Резерфорд со своими учениками и коллегами изучал рассеяние $α$-частиц, проходящих через тоненькую золотую фольгу и падаюших на экран. Альфа-частицы обычно отклонялись от первоначального направления всего на один градус, подтверждая, казалось бы, равномерность и однородность свойств атомов золота. И вдруг исследователи заметили, что некоторые $α$-частицы резко меняли направление своего пути, будто наталкиваясь на какую-то преграду.

Разместив экран перед фольгой, Резерфорд сумел обнаружить даже те редчайшие случаи, когда $α$-частицы, отразившись от атомов золота, летели в противоположном направлении.

Расчеты показали, что наблюдаемые явления могли произойти, если бы вся масса атома и весь его положительный заряд были сосредоточены в крохотном центральном ядре. Радиус ядра, как выяснилось, в 100 000 раз меньше радиуса всего атома, той его области, в которой находятся электроны, имеющие отрицательный заряд. Если применить образное сравнение, то весь объем атома можно уподобить стадиону в Лужниках, а ядро - футбольному мячу, расположенному в центре поля.

Атом любого химического элемента сравним с крохотной Солнечной системой. Поэтому такую модель атома, предложенную Резерфордом, называют планетарной.

Протоны и нейтроны

Оказывается, и крошечное атомное ядро, в котором сосредоточена вся масса атома, состоит из частиц двух видов - протонов и нейтронов.

Протоны имеют заряд, равный заряду электронов, но противоположный по знаку $(+1)$, и массу, равную массе атома водорода (она принята в химии за единицу). Обо значаются протоны знаком $↙{1}↖{1}p$ (или $р+$). Нейтроны не несут заряда, они нейтральны и имеют массу, равную массе протона, т.е. $1$. Обозначают нейтроны знаком $↙{0}↖{1}n$ (или $n^0$).

Протоны и нейтроны вместе называют нуклонами (от лат. nucleus - ядро).

Сумма числа протонов и нейтронов в атоме называется массовым числом . Например, массовое число атома алюминия:

Так как массой электрона, ничтожно малой, можно пренебречь, то очевидно, что в ядре сосредоточена вся масса атома. Электроны обозначают так: $e↖{-}$.

Поскольку атом электронейтрален, также очевидно, что число протонов и электронов в атоме одинаково. Оно равно порядковому номеру химического элемента , присвоенному ему в Периодической системе. Например, в ядре атома железа содержится $26$ протонов, а вокруг ядра вращается $26$ электронов. А как определить число ней тронов?

Как известно, масса атома складывается из массы протонов и нейтронов. Зная порядковый номер элемента $(Z)$, т.е. число протонов, и массовое число $(А)$, равное сумме чисел протонов и нейтронов, можно найти число нейтронов $(N)$ по формуле:

Например, число нейтронов в атоме железа равно:

$56 – 26 = 30$.

В таблице представлены основные характеристики элементарных частиц.

Основные характеристики элементарных частиц.

Изотопы

Разновидности атомов одного и того же элемента, имеющие одинаковый заряд ядра, но разное массовое число, называются изотопами.

Слово изотоп состоит из двух греческих слов: isos - одинаковый и topos - место, обозначает «занимающий одно место» (клетку) в Периодической системе элементов.

Химические элементы, встречающиеся в природе, являются смесью изотопов. Так, углерод имеет три изотопа с массой $12, 13, 14$; кислород - три изотопа с массой $16, 17, 18$ и т. д.

Обычно приводимая в Периодической системе относительная атомная масса химического элемента является средним значением атомных масс природной смеси изотопов данного элемента с учетом их относительного содержания в природе, поэтому значения атомных масс довольно часто являются дробными. Например, атомы природного хлора представляют собой смесь двух изотопов - $35$ (их в природе $75%$) и $37$ (их $25%$); следовательно, относительная атомная масса хлора равна $35.5$. Изотопы хлора записываются так:

$↖{35}↙{17}{Cl}$ и $↖{37}↙{17}{Cl}$

Химические свойства изотопов хлора совершенно одинаковы, как и изотопов большинства химических элементов, например калия, аргона:

$↖{39}↙{19}{K}$ и $↖{40}↙{19}{K}$, $↖{39}↙{18}{Ar}$ и $↖{40}↙{18}{Ar}$

Однако изотопы водорода сильно различаются по свойствам из-за резкого кратного увеличения их относительной атомной массы; им даже присвоены индивидуальные названия и химические знаки: протий - $↖{1}↙{1}{H}$; дейтерий - $↖{2}↙{1}{H}$, или $↖{2}↙{1}{D}$; тритий - $↖{3}↙{1}{H}$, или $↖{3}↙{1}{T}$.

Теперь можно дать современное, более строгое и научное определение химическому элементу.

Химический элемент - это совокупность атомов с одинаковым зарядом ядра.

Строение электронных оболочек атомов элементов первых четырех периодов

Рассмотрим отображение электронных конфигураций атомов элементов по периодам системы Д. И. Менделеева.

Элементы первого периода.

Схемы электронного строения атомов показывают распределение электронов по электронным слоям (энергетическим уровням).

Электронные формулы атомов показывают распределение электронов по энергетическим уровням и под уровням.

Графические электронные формулы атомов показывают распределение электронов не только по уровням и под уровням, но и по орбиталям.

В атоме гелия первый электронный слой завершен - в нем $2$ электрона.

Водород и гелий - $s$-элементы, у этих атомов заполняется электронами $s$-орбиталь.

Элементы второго периода.

У всех элементов второго периода первый электронный слой заполнен, и электроны заполняют $s-$ и $р$-орбитали второго электронного слоя в соответствии с принципом наименьшей энергии (сначала $s$, а затем $р$) и правилами Паули и Хунда.

В атоме неона второй электронный слой завершен - в нем $8$ электронов.

Элементы третьего периода.

У атомов элементов третьего периода первый и второй электронные слои завершены, поэтому заполняется третий электронный слой, в котором электроны могут занимать 3s-, 3р- и 3d-под уровни.

Строение электронных оболочек атомов элементов третьего периода.

У атома магния достраивается $3,5$-электронная орбиталь. $Na$ и $Mg$ - $s$-элементы.

У алюминия и последующих элементов заполняется электронами $3d$-подуровень.

$↙{18}{Ar}$ Аргон $1s^2{2}s^2{2}p^6{3}s^2{3}p^6$

В атоме аргона на внешнем слое (третьем электронном слое) $8$ электронов. Как внешний слой завершен, но всего в третьем электронном слое, как вы уже знаете, может быть 18 электронов, а это значит, что у элементов третьего периода остаются незаполненными $3d$-орбитали.

Все элементы от $Al$ до $Ar$ - $р$-элементы.

$s-$ и $р$-элементы образуют главные подгруппы в Периодической системе.

Элементы четвертого периода.

У атомов калия и кальция появляется четвертый электронный слой, заполняется $4s$-подуровень, т.к. он имеет меньшую энергию, чем $3d$-подуровень. Для упрощения графических электронных формул атомов элементов четвертого периода:

  1. обозначим условно графическую электронную формулу аргона так: $Ar$;
  2. не будем изображать подуровни, которые у этих атомов не заполняются.

$К, Са$ - $s$-элементы, входящие в главные подгруппы. У атомов от $Sc$ до $Zn$ заполняется электронами 3d-подуровень. Это $3d$-элементы. Они входят в побочные подгруппы, у них заполняется предвнешний электронный слой, их относят к переходным элементам.

Обратите внимание на строение электронных оболочек атомов хрома и меди. В них происходит «провал» одного электрона с $4s-$ на $3d$-подуровень, что объясняется большей энергетической устойчивостью образующихся при этом электронных конфигураций $3d^5$ и $3d^{10}$:

$↙{24}{Cr}$ $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{4} 4s^{2}…$

$↙{29}{Cu}$ $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{9}4s^{2}…$

Символ элемента, порядковый номер, название Схема электронного строения Электронная формула Графическая электронная формула
$↙{19}{K}$ Калий $1s^2{2}s^2{2}p^6{3}p^6{4}s^1$
$↙{20}{C}$ Кальций $1s^2{2}s^2{2}p^6{3}p^6{4}s^2$
$↙{21}{Sc}$ Скандий $1s^2{2}s^2{2}p^6{3}p^6{4}s^1{3}d^1$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^1{4}s^1$
$↙{22}{Ti}$ Титан $1s^2{2}s^2{2}p^6{3}p^6{4}s^2{3}d^2$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^2{4}s^2$
$↙{23}{V}$ Ванадий $1s^2{2}s^2{2}p^6{3}p^6{4}s^2{3}d^3$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^3{4}s^2$
$↙{24}{Сr}$ Хром $1s^2{2}s^2{2}p^6{3}p^6{4}s^1{3}d^5$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^5{4}s^1$
$↙{29}{Сu}$ Хром $1s^2{2}s^2{2}p^6{3}p^6{4}s^1{3}d^{10}$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^{10}{4}s^1$
$↙{30}{Zn}$ Цинк $1s^2{2}s^2{2}p^6{3}p^6{4}s^2{3}d^{10}$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^{10}{4}s^2$
$↙{31}{Ga}$ Галлий $1s^2{2}s^2{2}p^6{3}p^6{4}s^2{3}d^{10}4p^{1}$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^{10}{4}s^{2}4p^{1}$
$↙{36}{Kr}$ Криптон $1s^2{2}s^2{2}p^6{3}p^6{4}s^2{3}d^{10}4p^6$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^{10}{4}s^{2}4p^6$

В атоме цинка третий электронный слой завершен - в нем заполнены все подуровни $3s, 3р$ и $3d$, всего на них $18$ электронов.

У следующих за цинком элементов продолжает заполняться четвертый электронный слой, $4р$-подуровень. Элементы от $Ga$ до $Кr$ - $р$-элементы.

У атома криптона внешний (четвертый) слой завершен, имеет $8$ электронов. Но всего в четвертом электронном слое, как вы знаете, может быть $32$ электрона; у атома криптона пока остаются незаполненными $4d-$ и $4f$-подуровни.

У элементов пятого периода идет заполнение подуровней в следующем порядке: $5s → 4d → 5р$. И также встречаются исключения, связанные с «провалом» электронов, у $↙{41}Nb$, $↙{42}Мо$, $↙{44}Ru$, $↙{45}Rh$, $↙{46}Pd$, $↙{47}Ag$. В шестом и седьмом периодах появляются $f$-элементы , т.е. элементы, у которых идет заполнение соответственно $4f-$ и $5f$-подуровней третьего снаружи электронного слоя.

$4f$-элементы называют лантаноидами.

$5f$-элементы называют актиноидами.

Порядок заполнения электронных подуровней в атомах элементов шестого периода: $↙{55}Cs$ и $↙{56}Ва$ - $6s$-элементы; $↙{57}La ... 6s^{2}5d^{1}$ - $5d$-элемент; $↙{58}Се$ – $↙{71}Lu - 4f$-элементы; $↙{72}Hf$ – $↙{80}Hg - 5d$-элементы; $↙{81}Т1$ – $↙{86}Rn - 6d$-элементы. Но и здесь встречаются элементы, у которых нарушается порядок заполнения электронных орбиталей, что, например, связано с большей энергетической устойчивостью наполовину и полностью заполненных $f$-подуровней, т.е. $nf^7$ и $nf^{14}$.

В зависимости от того, какой подуровень атома заполняется электронами последним, все элементы, как вы уже поняли, делят на четыре электронных семейства, или блока:

  1. $s$-элементы; электронами заполняется $s$-подуровень внешнего уровня атома; к $s$-элементам относятся водород, гелий и элементы главных подгрупп I и II групп;
  2. $р$-элементы; электронами заполняется $р$-подуровень внешнего уровня атома; к $р$-элементам относятся элементы главных подгрупп III–VIII групп;
  3. $d$-элементы; электронами заполняется $d$-подуровень предвнешнего уровня атома; к $d$-элементам относятся элементы побочных подгрупп I–VIII групп, т.е. элементы вставных декад больших периодов, расположенных между $s-$ и $р-$элементами. Их также называют переходными элементами;
  4. $f$-элементы; электронами заполняется $f-$подуровень третьего снаружи уровня атома; к ним относятся лантаноиды и актиноиды.

Электронная конфигурация атома. Основное и возбужденное состояние атомов

Швейцарский физик В. Паули в $1925$ г. установил, что в атоме на одной орбитали может находиться не более двух электронов , имеющих противоположные (антипараллельные) спины (в переводе с английского - веретено), т.е. обладающих такими свойствами, которые условно можно представить себе как вращение электрона вокруг своей воображаемый оси по часовой стрелке или против. Этот принцип носит название принципа Паули.

Если на орбитали находится один электрон, то он называется неспаренным , если два, то это спаренные электроны , т.е. электроны с противоположными спинами.

На рисунке показана схема деления энергетических уровней на подуровни.

$s-$Орбиталь , как вы уже знаете, имеет сферическую форму. Электрон атома водорода $(n = 1)$ располагается на этой орбитали и неспарен. По этому его электронная формула , или электронная конфигурация , записывается так: $1s^1$. В электронных формулах номер энергетического уровня обозначается цифрой, стоящей перед буквой $(1…)$, латинской буквой обозначают подуровень (тип орбитали), а цифра, которая записывается справа сверху от буквы (как показатель степени), показывает число электронов на подуровне.

Для атома гелия Не, имеющего два спаренных электрона на одной $s-$орбитали, эта формула: $1s^2$. Электронная оболочка атома гелия завершена и очень устойчива. Гелий - это благородный газ. На втором энергетическом уровне $(n = 2)$ имеются четыре орбитали, одна $s$ и три $р$. Электроны $s$-орбитали второго уровня ($2s$-орбитали) обладают более высокой энергией, т.к. находятся на большем расстоянии от ядра, чем электроны $1s$-орбитали $(n = 2)$. Вообще для каждого значения $n$ существует одна $s-$орбиталь, но с соответствующим запасом энергии электронов на нем и, следовательно, с соответствующим диаметром, растущим по мере увеличения значения $n$.$s-$Орбиталь, как вы уже знаете, имеет сферическую форму. Электрон атома водорода $(n = 1)$ располагается на этой орбитали и неспарен. По этому его электронная формула, или электронная конфигурация, записывается так: $1s^1$. В электронных формулах номер энергетического уровня обозначается цифрой, стоящей перед буквой $(1…)$, латинской буквой обозначают подуровень (тип орбитали), а цифра, которая записывается справа сверху от буквы (как показатель степени), показывает число электронов на подуровне.

Для атома гелия $Не$, имеющего два спаренных электрона на одной $s-$орбитали, эта формула: $1s^2$. Электронная оболочка атома гелия завершена и очень устойчива. Гелий - это благородный газ. На втором энергетическом уровне $(n = 2)$ имеются четыре орбитали, одна $s$ и три $р$. Электроны $s-$орбитали второго уровня ($2s$-орбитали) обладают более высокой энергией, т.к. находятся на большем расстоянии от ядра, чем электроны $1s$-орбитали $(n = 2)$. Вообще для каждого значения $n$ существует одна $s-$орбиталь, но с соответствующим запасом энергии электронов на нем и, следовательно, с соответствующим диаметром, растущим по мере увеличения значения $n$.

$р-$Орбиталь имеет форму гантели, или объемной восьмерки. Все три $р$-орбитали расположены в атоме взаимно перпендикулярно вдоль пространственных координат, проведенных через ядро атома. Следует подчеркнуть еще раз, что каждый энергетический уровень (электронный слой), начиная с $n= 2$, имеет три $р$-орбитали. С увеличением значения $n$ электроны занимают $р$-орбитали, расположенные на больших расстояниях от ядра и направленные по осям $x, y, z$.

У элементов второго периода $(n = 2)$ заполняется сначала одна $s$-орбиталь, а затем три $р$-орбитали; электронная формула $Li: 1s^{2}2s^{1}$. Электрон $2s^1$ слабее связан с ядром атома, поэтому атом лития может легко отдавать его (как вы, очевидно, помните, этот процесс называется окислением), превращаясь в ион лития $Li^+$.

В атоме бериллия Be четвертый электрон также размещается на $2s$-орбитали: $1s^{2}2s^{2}$. Два внешних электрона атома бериллия легко отрываются - $В^0$ при этом окисляется в катион $Ве^{2+}$.

У атома бора пятый электрон занимает $2р$-орбиталь: $1s^{2}2s^{2}2p^{1}$. Далее у атомов $C, N, O, F$ идет заполнение $2р$-орбиталей, которое заканчивается у благородного газа неона: $1s^{2}2s^{2}2p^{6}$.

У элементов третьего периода заполняются соответственно $3s-$ и $3р$-орбитали. Пять $d$-орбиталей третьего уровня при этом остаются свободными:

$↙{11}Na 1s^{2}2s^{2}2p^{6}3s^{1}$,

$↙{17}Cl 1s^{2}2s^{2}2p^{6}3s^{2}3p^{5}$,

$↙{18}Ar 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}$.

Иногда в схемах, изображающих распределение электронов в атомах, указывают только число электронов на каждом энергетическом уровне, т.е. записывают сокращенные электронные формулы атомов химических элементов, в отличие от приведенных выше полных электронных формул, например:

$↙{11}Na 2, 8, 1;$ $↙{17}Cl 2, 8, 7;$ $↙{18}Ar 2, 8, 8$.

У элементов больших периодов (четвертого и пятого) первые два электрона занимают соответственно $4s-$ и $5s$-орбитали: $↙{19}K 2, 8, 8, 1;$ $↙{38}Sr 2, 8, 18, 8, 2$. Начиная с третьего элемента каждого большого периода, последующие десять электронов поступят на предыдущие $3d-$ и $4d-$орбитали соответственно (у элементов побочных подгрупп): $↙{23}V 2, 8, 11, 2;$ $↙{26}Fr 2, 8, 14, 2;$ $↙{40}Zr 2, 8, 18, 10, 2;$ $↙{43}Tc 2, 8, 18, 13, 2$. Как правило, когда будет заполнен предыдущий $d$-подуровень, начнет заполняться внешний (соответственно $4р-$ и $5р-$) $р-$подуровень: $↙{33}As 2, 8, 18, 5;$ $↙{52}Te 2, 8, 18, 18, 6$.

У элементов больших периодов - шестого и незавершенного седьмого - электронные уровни и подуровни заполняются электронами, как правило, так: первые два электрона поступают на внешний $s-$подуровень: $↙{56}Ba 2, 8, 18, 18, 8, 2;$ $↙{87}Fr 2, 8, 18, 32, 18, 8, 1$; следующий один электрон (у $La$ и $Са$) на предыдущий $d$-подуровень: $↙{57}La 2, 8, 18, 18, 9, 2$ и $↙{89}Ac 2, 8, 18, 32, 18, 9, 2$.

Затем последующие $14$ электронов поступят на третий снаружи энергетический уровень, на $4f$ и $5f$-орбитали соответственно лантоноидов и актиноидов: $↙{64}Gd 2, 8, 18, 25, 9, 2;$ $↙{92}U 2, 8, 18, 32, 21, 9, 2$.

Затем снова начнет застраиваться второй снаружи энергетический уровень ($d$-подуровень) у элементов побочных подгрупп: $↙{73}Ta 2, 8, 18, 32, 11, 2;$ $↙{104}Rf 2, 8, 18, 32, 32, 10, 2$. И, наконец, только после полного заполнения десятью электронами $d$-подуровня будет снова заполняться $р$-под уровень: $↙{86}Rn 2, 8, 18, 32, 18, 8$.

Очень часто строение электронных оболочек атомов изображают с помощью энергетических, или квантовых ячеек - записывают так называемые графические электронные формулы . Для этой записи используют следующие обозначения: каждая квантовая ячейка обозначается клеткой, которая соответствует одной орбитали; каждый электрон обозначается стрелкой, соответствующей направлению спина. При записи графической электронной формулы следует помнить два правила: принцип Паули , согласно которому в ячейке (орбитали) может быть не более двух электронов, но с антипараллельными спинами, и правило Ф. Хунда , согласно которому электроны занимают свободные ячейки сначала по одному и имеют при этом одинаковое значение спина, и лишь затем спариваются, но спины при этом, по принципу Паули, будут уже противоположно направленными.

Атом - электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженных электронов. В центре атома находится положительно заряженное ядро. Оно занимает ничтожную часть пространства внутри атома, в нём сосредоточены весь положительный заряд и почти вся масса атома.

Ядро состоит из элементарных частиц - протона и нейтрона; вокруг атомного ядра по замкнутым орбиталям движутся электроны.

Протон (р) - элементарная частица с относительной массой 1,00728 атомной единицы массы и зарядом +1 условную единицу. Число протонов в атомном ядре равно порядковому номеру элемента в Периодической системе Д.И. Менделеева.

Нейтрон (n) - элементарная нейтральная частица с относительной массой 1,00866 атомной единицы массы (а. е. м.).

Число нейтронов в ядре N определяют по формуле:

где А - массовое число, Z - заряд ядра, равный числу протонов (порядковому номеру).

Обычно параметры ядра атома записывают следующим образом: слева внизу от символа элемента ставят заряд ядра, а вверху - массовое число, например:

Эта запись показывает, что заряд ядра (следовательно, и число протонов) для атома фосфора равен 15, массовое число равно 31, а число нейтронов равно 31 – 15 = 16. Так как массы протона и нейтрона очень мало отличаются друг от друга, то массовое число приблизительно равно относительной атомной массе ядра.

Электрон (е –) - элементарная частица с массой 0,00055 а. е. м. и условным зарядом –1. Число электронов в атоме равно заряду ядра атома (порядковому номеру элемента в Периодической системе Д.И. Менделеева).

Электроны движутся вокруг ядра по строго определённым орбиталям, образуя так называемое электронное облако.

Область пространства вокруг атомного ядра, где наиболее (90 и более %) вероятно нахождение электрона, определяет форму электронного облака.

Электронное облако s-электрона имеет сферическую форму; на s-энергетическом подуровне может максимально находиться два электрона.

Электронное облако p-электрона имеет гантелеобразную форму; на трёх p-орбиталях максимально может находиться шесть электронов.

Орбитали изображают в виде квадрата, сверху или снизу которого пишут значения главного и побочного квантовых чисел, описывающих данную орбиталь. Такую запись называют графической электронной формулой, например:

В этой формуле стрелками обозначают электрон, а направление стрелки соответствует направлению спина - собственного магнитного момента электрона. Электроны с противоположными спинами ↓ называют спаренными.

Электронные конфигурации атомов элементов можно представить в виде электронных формул, в которых указывают символы подуровня, коэффициент перед символом подуровня показывает его принадлежность к данному уровню, а степень у символа - число электронов данного подуровня.

В таблице 1 приведено строение электронных оболочек атомов первых 20 элементов Периодической системы химических элементов Д.И. Менделеева.

Химические элементы, в атомах которых s-подуровень внешнего уровня пополняется одним или двумя электронами, называют s-элементами. Химические элементы, в атомах которых заполняется p-подуровень (от одного до шести электронов), называют p-элементами.

Число электронных слоёв в атоме химического элемента равно номеру периода.

В соответствии с правилом Хунда электроны располагаются на однотипных орбиталях одного энергетического уровня таким образом, чтобы суммарный спин был максимален. Следовательно, при заполнении энергетического подуровня каждый электрон прежде всего занимает отдельную ячейку, а только после этого начинается их спаривание. Например, у атома азота все p-электроны будут находиться в отдельных ячейках, а у кислорода начнётся их спаривание, которое полностью закончится у неона.

Изотопами называют атомы одного и того же элемента, содержащие в своих ядрах одинаковое число протонов, но различное число нейтронов.

Изотопы известны для всех элементов. Поэтому атомные массы элементов в периодической системе являются средним значением из массовых чисел природных смесей изотопов и отличаются от целочисленных значений. Таким образом, атомная масса природной смеси изотопов не может служить главной характеристикой атома, а следовательно, и элемента. Такой характеристикой атома является заряд ядра, определяющий число электронов в электронной оболочке атома и её строение.

Рассмотрим несколько типовых заданий по этому разделу.

Пример 1. Атом какого элемента имеет электронную конфигурацию 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 ?

На внешнем энергетическом уровне у данного элемента находится один 4s-электрон. Следовательно, этот химический элемент находится в четвёртом периоде первой группе главной подгруппе. Этот элемент - калий.

К этому ответу можно прийти по-другому. Сложив общее количество всех электронов, получим 19. Общее число электронов равно порядковому номеру элемента. Под номером 19 в периодической системе находится калий.

Пример 2. Химическому элементу соответствует высший оксид RO 2 . Электронной конфигурации внешнего энергетического уровня атома этого элемента соответствует электронная формула:

  1. ns 2 np 4
  2. ns 2 np 2
  3. ns 2 np 3
  4. ns 2 np 6

По формуле высшего оксида (смотрите на формулы высших оксидов в Периодической системе) устанавливаем, что этот химический элемент находится в четвёртой группе главной подгруппы. У этих элементов на внешнем энергетическом уровне находятся четыре электрона - два s и два p. Следовательно, правильный ответ 2.

Тренировочные задания

1. Общее число s-электронов в атоме кальция равно

1) 20
2) 40
3) 8
4) 6

2. Число спаренных p-электронов в атоме азота равно

1) 7
2) 14
3) 3
4) 4

3. Число неспаренных s-электронов в атоме азота равно

1) 7
2) 14
3) 3
4) 4

4. Число электронов на внешнем энергетическом уровне атома аргона равно

1) 18
2) 6
3) 4
4) 8

5. Число протонов, нейтронов и электронов в атоме 9 4 Be равно

1) 9, 4, 5
2) 4, 5, 4
3) 4, 4, 5
4) 9, 5, 9

6. Распределение электронов по электронным слоям 2; 8; 4 - соответствует атому, расположенному в(во)

1) 3-м периоде, IА группе
2) 2-м периоде, IVА группе
3) 3-м периоде, IVА группе
4) 3-м периоде, VА группе

7. Химическому элементу, расположенному в 3-м периоде VA группе соответствует схема электронного строения атома

1) 2, 8, 6
2) 2, 6, 4
3) 2, 8, 5
4) 2, 8, 2

8. Химический элемент с электронной конфигурацией 1s 2 2s 2 2p 4 образует летучее водородное соединение, формула которого

1) ЭН
2) ЭН 2
3) ЭН 3
4) ЭН 4

9. Число электронных слоёв в атоме химического элемента равно

1) его порядковому номеру
2) номеру группы
3) числу нейтронов в ядре
4) номеру периода

10. Число внешних электронов в атомах химических элементов главных подгрупп равно

1) порядковому номеру элемента
2) номеру группы
3) числу нейтронов в ядре
4) номеру периода

11. Два электрона находятся во внешнем электронном слое атомов каждого из химических элементов в ряду

1) He, Be, Ba
2) Mg, Si, O
3) C, Mg, Ca
4) Ba, Sr, B

12. Химический элемент, электронная формула которого 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 , образует оксид состава

1) Li 2 O
2) MgO
3) K 2 O
4) Na 2 O

13. Число электронных слоев и число p-электронов в атоме серы равно

1) 2, 6
2) 3, 4
3) 3, 16
4) 3, 10

14. Электронная конфигурация ns 2 np 4 соответствует атому

1) хлора
2) серы
3) магния
4) кремния

15. Валентные электроны атома натрия в основном состоянии находятся на энергетическом подуровне

1) 2s
2) 2p
3) 3s
4) 3p

16. Атомы азота и фосфора имеют

1) одинаковое число нейтронов
2) одинаковое число протонов
3) одинаковую конфигурацию внешнего электронного слоя

17. Одинаковое число валентных электронов имеют атомы кальция и

1) калия
2) алюминия
3) бериллия
4) бора

18. Атомы углерода и фтора имеют

1) одинаковое число нейтронов
2) одинаковое число протонов
3) одинаковое число электронных слоёв
4) одинаковое число электронов

19. У атома углерода в основном состоянии число неспаренных электронов равно

1) 1
3) 3
2) 2
4) 4

20. В атоме кислорода в основном состоянии число спаренных электронов равно

Химическими веществами называют то, из чего состоит окружающий нас мир.

Свойства каждого химического вещества делятся на два типа: это химические, которые характеризуют его способность образовывать другие вещества, и физические, которые объективно наблюдаются и могут быть рассмотрены в отрыве от химических превращений. Так, например, физическими свойствами вещества являются его агрегатное состояние (твердое, жидкое или газообразное), теплопроводность, теплоемкость, растворимость в различных средах (вода, спирт и др.), плотность, цвет, вкус и т.д.

Превращения одних химических веществ в другие вещества называют химическими явлениями или химическими реакциями. Следует отметить, что существуют также и физические явления, которые, очевидно, сопровождаются изменением каких-либо физических свойств вещества без его превращения в другие вещества. К физическим явлениям, например, относятся плавление льда, замерзание или испарение воды и др.

О том, что в ходе какого-либо процесса имеет место химическое явление, можно сделать вывод, наблюдая характерные признаки химических реакций, такие как изменение цвета, образование осадка, выделение газа, выделение теплоты и (или) света.

Так, например, вывод о протекании химических реакций можно сделать, наблюдая:

Образование осадка при кипячении воды, называемого в быту накипью;

Выделение тепла и света при горении костра;

Изменение цвета среза свежего яблока на воздухе;

Образование газовых пузырьков при брожении теста и т.д.

Мельчайшие частицы вещества, которые в процессе химических реакций практически не претерпевают изменений, а лишь по-новому соединяются между собой, называются атомами.

Сама идея о существовании таких единиц материи возникла еще в древней Греции в умах античных философов, что собственно и объясняет происхождение термина «атом», поскольку «атомос» в буквальном переводе с греческого означает «неделимый».

Тем не менее, вопреки идее древнегреческих философов, атомы не являются абсолютным минимумом материи, т.е. сами имеют сложное строение.

Каждый атом состоит из так называемых субатомных частиц – протонов, нейтронов и электронов, обозначаемых соответственно символами p + , n o и e − . Надстрочный индекс в используемых обозначениях указывает на то, что протон имеет единичный положительный заряд, электрон – единичный отрицательный заряд, а нейтрон заряда не имеет.

Что касается качественного устройства атома, то у каждого атома все протоны и нейтроны сосредоточены в так называемом ядре, вокруг которого электроны образуют электронную оболочку.

Протон и нейтрон обладают практически одинаковыми массами, т.е. m p ≈ m n , а масса электрона почти в 2000 раз меньше массы каждого из них, т.е. m p /m e ≈ m n /m e ≈ 2000.

Поскольку фундаментальным свойством атома является его электронейтральность, а заряд одного электрона равен заряду одного протона, из этого можно сделать вывод о том, что количество электронов в любом атоме равно количеству протонов.

Так, например, в таблице ниже представлен возможный состав атомов:

Вид атомов с одинаковым зарядом ядер, т.е. с одинаковым числом протонов в их ядрах, называют химическим элементом. Таким образом, из таблицы выше можно сделать вывод о том, что атом1 и атом2 относятся в одному химическому элементу, а атом3 и атом4 — к другому химическому элементу.

Каждый химический элемент имеет свое название и индивидуальный символ, который читается определенным образом. Так, например, самый простой химический элемент, атомы которого содержат в ядре только один протон, имеет название «водород» и обозначается символом «Н», что читается как «аш», а химический элемент с зарядом ядра +7 (т.е. содержащий 7 протонов) — «азот», имеет символ «N» , который читается как «эн».

Как можно заметить из представленной выше таблицы, атомы одного химического элемента могут отличаться количеством нейтронов в ядрах.

Атомы, относящиеся к одному химическому элементу, но имеющие разное количество нейтронов и, как следствие массу, называют изотопами.

Так, например, химический элемент водород имеет три изотопа – 1 Н, 2 Н и 3 Н. Индексы 1, 2 и 3 сверху от символа Н означают суммарное количество нейтронов и протонов. Т.е. зная, что водород – это химический элемент, который характеризуется тем, что в ядрах его атомов находится по одному протону, можно сделать вывод о том, что в изотопе 1 Н вообще нет нейтронов (1-1=0), в изотопе 2 Н – 1 нейтрон (2-1=1) и в изотопе 3 Н – два нейтрона (3-1=2). Поскольку, как уже было сказано, нейтрон и протон имеют одинаковые массы, а масса электрона по сравнению с ними пренебрежимо мала, это значит, что изотоп 2 Н практически в два раза тяжелее изотопа 1 Н, а изотоп 3 Н — и вовсе в три раза. В связи с таким большим разбросом масс изотопов водорода изотопам 2 Н и 3 Н даже были присвоены отдельные индивидуальные названия и символы, что не характерно больше ни для одного другого химического элемента. Изотопу 2 Н дали название дейтерий и присвоили символ D, а изотопу 3 Н дали название тритий и присвоили символ Т.

Если принять массу протона и нейтрона за единицу, а массой электрона пренебречь, фактически верхний левый индекс помимо суммарного количества протонов и нейтронов в атоме можно считать его массой, в связи с чем этот индекс называют массовым числом и обозначают символом А. Поскольку за заряд ядра любого атома отвечают протоны, а заряд каждого протона условно считается равным +1, количество протонов в ядре называют зарядовым числом (Z). Обозначив количество нейтронов в атоме буквой N, математически взаимосвязь между массовым числом, зарядовым числом и количеством нейтронов можно выразить как:

Согласно современным представлениям, электрон имеет двойственную (корпускулярно-волновую) природу. Он обладает свойствами как частицы, так и волны. Подобно частице, электрон имеет массу и заряд, но в то же время поток электронов, подобно волне, характеризуется способностью к дифракции.

Для описания состояния электрона в атоме используют представления квантовой механики, согласно которым электрон не имеет определенной траектории движения и может находиться в любой точке пространства, но с разной вероятностью.

Область пространства вокруг ядра, где наиболее вероятно нахождение электрона, называется атомной орбиталью.

Атомная орбиталь может обладать различной формой, размером и ориентацией. Также атомную орбиталь называют электронным облаком.

Графически одну атомную орбиталь принято обозначать в виде квадратной ячейки:

Квантовая механика имеет крайне сложный математический аппарат, поэтому в рамках школьного курса химии рассматриваются только лишь следствия квантово-механической теории.

Согласно этим следствиям, любую атомную орбиталь и находящийся на ней электрон полностью характеризуют 4 квантовых числа.

  • Главное квантовое число – n — определяет общую энергию электрона на данной орбитали. Диапазон значений главного квантового числа – все натуральные числа, т.е. n = 1,2,3,4, 5 и т.д.
  • Орбитальное квантовое число — l – характеризует форму атомной орбитали и может принимать любые целочисленные значения от 0 до n-1, где n, напомним, — это главное квантовое число.

Орбитали с l = 0 называют s -орбиталями . s-Орбитали имеют сферическую форму и не обладают направленностью в пространстве:

Орбитали с l = 1 называются p -орбиталями . Данные орбитали обладают формой трехмерной восьмерки, т.е. формой, полученной вращением восьмерки вокруг оси симметрии, и внешне напоминают гантель:

Орбитали с l = 2 называются d -орбиталями , а с l = 3 – f -орбиталями . Их строение намного более сложное.

3) Магнитное квантовое число – m l – определяет пространственную ориентацию конкретной атомной орбитали и выражает проекцию орбитального момента импульса на направление магнитного поля. Магнитное квантовое число m l соответствует ориентации орбитали относительно направления вектора напряженности внешнего магнитного поля и может принимать любые целочисленные значения от –l до +l, включая 0, т.е. общее количество возможных значений равно (2l+1). Так, например, при l = 0 m l = 0 (одно значение), при l = 1 m l = -1, 0, +1 (три значения), при l = 2 m l = -2, -1, 0, +1, +2 (пять значений магнитного квантового числа) и т.д.

Так, например, p-орбитали, т.е. орбитали с орбитальным квантовым числом l = 1, имеющие форму «трехмерной восьмерки», соответствуют трем значениям магнитного квантового числа (-1, 0, +1), что, в свою очередь, соответствует трем перпендикулярным друг другу направлениям в пространстве.

4) Спиновое квантовое число (или просто спин) — m s — условно можно считать отвечающим за направление вращения электрона в атоме, оно может принимать значения. Электроны с разными спинами обозначают вертикальными стрелками, направленными в разные стороны: ↓ и .

Совокупность всех орбиталей в атоме, имеющих одно и то же значение главного квантового числа, называют энергетическим уровнем или электронной оболочкой. Любой произвольный энергетический уровень с некоторым номером n состоит из n 2 орбиталей.

Множество орбиталей с одинаковыми значениями главного квантового числа и орбитального квантового числа представляет собой энергетический подуровень.

Каждый энергетический уровень, которому соответствует главное квантовое число n, содержит n подуровней. В свою очередь, каждый энергетический подуровень с орбитальным квантовым числом l, состоит из (2l+1) орбиталей. Таким образом, s-подуровень состоит из одной s-орбитали, p-подуровень – трех p-орбиталей, d-подуровень – пяти d-орбиталей, а f-подуровень — из семи f-орбиталей. Поскольку, как уже было сказано, одна атомная орбиталь часто обозначается одной квадратной ячейкой, то s-, p-, d- и f-подуровни можно графически изобразить следующим образом:

Каждой орбитали соответствует индивидуальный строго определенный набор трех квантовых чисел n, l и m l .

Распределение электронов по орбиталям называют электронной конфигурацией.

Заполнение атомных орбиталей электронами происходит в соответствии с тремя условиями:

  • Принцип минимума энергии : электроны заполняют орбитали, начиная с подуровня с наименьшей энергией. Последовательность подуровней в порядке увеличения их энергий выглядит следующим образом: 1s<2s<2p<3s<3p<4s≤3d<4p<5s≤4d<5p<6s…;

Для того чтобы проще запомнить данную последовательность заполнения электронных подуровней, весьма удобна следующая графическая иллюстрация:

  • Принцип Паули : на каждой орбитали может находиться не более двух электронов.

Если на орбитали находится один электрон, то он называется неспаренным, а если два, то их называют электронной парой.

  • Правило Хунда : наиболее устойчивое состояние атома является такое, при котором в пределах одного подуровня атом обладает максимально возможным числом неспаренных электронов. Такое наиболее устойчивое состояние атома называется основным состоянием.

Фактически вышесказанное означает то, что, например, размещение 1-го, 2-х, 3-х и 4-х электронов на трех орбиталях p-подуровня будет осуществляться следующим образом:

Заполнение атомных орбиталей от водорода, имеющего зарядовое число равное 1, до криптона (Kr) с зарядовым числом 36 будет осуществляться следующим образом:

Подобное изображение порядка заполнения атомных орбиталей называется энергетической диаграммой. Исходя из электронных диаграмм отдельных элементов, можно записать их так называемые электронные формулы (конфигурации). Так, например, элемент с 15ю протонами и, как следствие, 15ю электронами, т.е. фосфор (P), будет иметь следующий вид энергетической диаграммы:

При переводе в электронную формулу атома фосфора примет вид:

15 P = 1s 2 2s 2 2p 6 3s 2 3p 3

Цифрами нормального размера слева от символа подуровня показан номер энергетического уровня, а верхними индексами справа от символа подуровня показано количество электронов на соответствующем подуровне.

Ниже приведены электронные формул первых 36 элементов периодической системы Д.И. Менделеева.

период № элемента символ название электронная формула
I 1 H водород 1s 1
2 He гелий 1s 2
II 3 Li литий 1s 2 2s 1
4 Be бериллий 1s 2 2s 2
5 B бор 1s 2 2s 2 2p 1
6 C углерод 1s 2 2s 2 2p 2
7 N азот 1s 2 2s 2 2p 3
8 O кислород 1s 2 2s 2 2p 4
9 F фтор 1s 2 2s 2 2p 5
10 Ne неон 1s 2 2s 2 2p 6
III 11 Na натрий 1s 2 2s 2 2p 6 3s 1
12 Mg магний 1s 2 2s 2 2p 6 3s 2
13 Al алюминий 1s 2 2s 2 2p 6 3s 2 3p 1
14 Si кремний 1s 2 2s 2 2p 6 3s 2 3p 2
15 P фосфор 1s 2 2s 2 2p 6 3s 2 3p 3
16 S сера 1s 2 2s 2 2p 6 3s 2 3p 4
17 Cl хлор 1s 2 2s 2 2p 6 3s 2 3p 5
18 Ar аргон 1s 2 2s 2 2p 6 3s 2 3p 6
IV 19 K калий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1
20 Ca кальций 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2
21 Sc скандий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1
22 Ti титан 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2
23 V ванадий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 3
24 Cr хром 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 здесь наблюдается проскок одного электрона с s на d подуровень
25 Mn марганец 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5
26 Fe железо 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6
27 Co кобальт 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 7
28 Ni никель 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 8
29 Cu медь 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 здесь наблюдается проскок одного электрона с s на d подуровень
30 Zn цинк 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10
31 Ga галлий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 1
32 Ge германий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 2
33 As мышьяк 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 3
34 Se селен 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 4
35 Br бром 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5
36 Kr криптон 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Как уже было сказано, в основном своем состоянии электроны в атомных орбиталях расположены согласно принципу наименьшей энергии. Тем не менее, при наличии пустых p-орбиталей в основном состоянии атома, нередко, при сообщении ему избыточной энергии атом можно перевести в так называемое возбужденное состояние. Так, например, атом бора в основном своем состоянии имеет электронную конфигурацию и энергетическую диаграмму следующего вида:

5 B = 1s 2 2s 2 2p 1

А в возбужденном состояниии (*), т.е. при сообщении некоторой энергии атому бора, его электронная конфигурация и энергетическая диаграмма будут выглядеть так:

5 B* = 1s 2 2s 1 2p 2

В зависимости от того, какой подуровень в атоме заполняется последним, химические элементы делят на s, p, d или f.

Нахождение s, p, d и f-элементов в таблице Д.И. Менделеева:

  • У s-элементов последний заполняемый s-подуровень. К данным элементам относятся элементы главных (слева в ячейке таблицы) подгрупп I и II групп.
  • У p-элементов заполняется p-подуровень. К p-элементам относят последние шесть элементов каждого периода, кроме первого и седьмого, а также элементы главных подгрупп III-VIII групп.
  • d-Элементы расположены между s – и p-элементами в больших периодах.
  • f-Элементы называют лантаноидами и актиноидами. Они вынесены вниз таблицы Д.И. Менделеева.