Крупнейший в мире китайский телескоп FAST совершил свое первое открытие. Китай построил крупнейший в мире радиотелескоп FAST

Чаще всего, если дело касается категории «самый-самый», то это принадлежит либо арабам, либо китайцам, при чем довольно часто пальму первенства они перехватывают друг у друга. Чтобы не создавалось в мире, всегда кто-то из этих ребят сделает больше, дороже, выше, футуристичней и в целом масштабней. Не так давно китайцам удалось выбиться в тройку владельцев крупнейших радиотелескопов мира, где телескоп FAST со своими размерами занял второе место.

В списке крупнейших радиотелескопов телескоп FAST по размерам уступил российскому РАТАН-600, что в Карачаево-Черкесии, недалеко от станицы Зеленчукская, на высоте 970 метров, с собирательной площадью 12 тыс. м² и диаметром 576 метров. Однако РАТАН-600 по типу антенны имеет кольцеобразную форму, а телескоп FAST неподвижную сферическую, и по этому типу он является наибольшим в мире, с наибольшей собирательной площадью, обогнав американский Аресибо, что в Пуэрто-Рико.

Телескоп FAST расшифровывается как «Five hundred meter Aperture Spherical Telescope», что в переводе значит «Радиотелескоп с пятисотметровой апертурой», китайцы называют эту технику Тяньянь, что значить «Глаз Небес». Радиотелескоп был построен в провинции Гуйчжоу, на юго-западе Китая. Чтобы удешевить строительство телескоп FAST сделали в классификации «Земляных чаш», то есть в качестве основы отражателя использовали природный рельеф местности.

Под строительство зеркала радиотелескопа наиболее подошла карстовая котловина Даоданг в Цяньнань-Буи-Мяоском автономном округе, диаметр которой составляет 800 метров. Над поверхностью котловины сделали обод на котором повещена сеть из стальных тросов, покрытая перфорированными треугольными алюминиевыми панелями, количество которых составило 4450 единиц. Таким образом телескоп FAST получил общий физический диаметр 500 метров, из которых эффективный диаметр составляет 300 метров. Собирательная площадь радиотелескопа составила около 190 тыс. м².

Для фокусировки радиоволн телескоп FAST оснастили приемником, подвешенным над зеркалом, с фокусным расстоянием 140 метров. Для понимания масштабов, в пространство от рефлектора до приемника можно поместить 45-этажный дом! Кабина приемника способна передвигаться посредством кабелей и сервомеханизмов, которые вторично подрегулируются роботами, для более точного приема. Вся система кабелей и сервомеханизмов крепится к шести высоким опорным башням. Также телескоп FAST имеет систему, позволяющую фокусироваться в любой точке пространства в пределах отклонения ± 40 ° от зенита.

Что касательно истории проекта, то впервые идею возвести телескоп FAST выдвинули в 1994 году, но одобрено это было лишь в июле 2007 года Национальной комиссией развития и реформ. Сперва были переселены деревни и жители, живущие в радиусе 5 километров от проекта. В конце 2008 года была осуществлена первая закладка фундамента. Строительство самой конструкции начали в марте 2011 года, длившееся 5 лет, до июля 2016 года. Телескоп FAST обошелся Китаю в 180 млн. долларов США.

В моем далеком уже детстве попалась мне хрестоматия по астрономии с тех ещё более далёких лет, которых я не застал, когда эта астрономия была предметом в школе. Читал её до дыр и мечтал о телескопе, чтобы хоть одним глазком посмотреть в ночное небо, но не сложилось. Рос в деревне, где ни знаний, ни наставника для этого не было. Так и ушло это увлечение. Но с возрастом обнаружил, что желание то осталось. Прошерстил интернет, оказывается людей, увлеченных телескопостроением и собирающих телескопы, да ещё какие, и с нуля - масса. Из профильных форумов набрался информации, теории, и решил построить небольшой телескоп для начинающего.

Спроси меня ранее, что такое телескоп, сказал бы - труба, с одной стороны смотришь, вторую направляешь на предмет наблюдения, одним словом подзорная труба, но побольше размером. Но оказывается для телескопостроения используют в основном другую конструкцию, которую ещё называют ньютоновским телескопом. При массе достоинств она имеет не так много недостатков, по сравнению с другими конструкциями телескопов. Принцип его работы понятен из рисунка - свет далёких планет падает на зеркало, имеющее в идеале параболическую форму, далее свет фокусируется и выносится за пределы трубы с помощью второго, установленного под 45 градусами по отношению к оси, по диагонали, зеркала, которое так и называют - диагональное. Далее свет попадает в окуляр и в глаз наблюдающего.


Телескоп это точный оптический прибор, поэтому при изготовлении необходимо соблюдать аккуратность. Перед этим необходимо произвести расчёты конструкции и мест установки элементов. В интернете существуют онлайн калькуляторы расчёта телескопов и грех этим не воспользоваться, но азы оптики знать тоже не помешает. Мне понравился калькулятор.

Для изготовления телескопа в принципе ничего сверхестественного не надо, я думаю что у любого хозяйственного человека в подсобке есть небольшой токарный станочек хотя бы по дереву, а то и по металлу. А если есть ещё и фрезеровочный станок - завидую белой завистью. И уж совсем не редкость теперь домашние лазерные станочки с ЧПУ для вырезания по фанере и 3D печатающий станок. К сожалению, у меня в хозяйстве из всего выше перечисленного ничего нет, окромя молотка, дрели, ножовки, электролобзика, тисков и мелкого ручного инструмента, плюс куча банок, ванночек с россыпью трубок, болтиков, гаечек, шайбочек и прочего гаражного металлолома, который вроде и выкинуть надо, но жалко.

При выборе размера зеркала (диаметр 114мм) мне кажется выбрал золотую середину, с одной стороны такой размер ходовой и уже не совсем маленький, с другой стороны стоимость не такая огромная, чтобы в случае фатальной неудачи пострадать финансово. Тем более главная задача была пощупать, разобраться и научиться на ошибках. Хотя, как говорят на всех форумах, самый хороший телескоп это тот, в которой наблюдают.

И так, для своего первого, надеюсь не последнего, телескопа я выбрал сферическое главное зеркало с диаметром 114мм и алюминиевым покрытием, фокусом 900мм и диагональным зеркалом, имеющего форму овала с малой диагональю в один дюйм. При таких размерах зеркала и фокусного расстояния различия форм сферы и параболы ничтожны, поэтому можно использовать недорогое сферическое зеркало.

Внутренний диаметр трубы по книге Навашина, Телескоп астронома-любителя (1979), для такого зеркала должен быть не менее 130мм. Конечно, лучше побольше. Трубу можно делать и самому из бумаги и эпоксидки, или из жести, но грех не воспользоваться готовым дешёвым материалом - в этот раз метровая канализационная PVH труба DN160, купленная за 4.46 евро в строймагазине. Толщина стенок 4мм мне показалась достаточной, с точки зрения прочности. Пилится и обрабатывается легко. Хотя есть и с 6мм толщины стенкой, но мне показалась тяжеловатой. Для того, чтобы распилить, пришлось на неё брутально сесть, никаких остаточных деформаций на глаз не наблюдается. Конечно, эстеты скажут фи, как можно в трубу для овна звёзды смотреть. Но для настоящих рукопоповцев это не преграда.

Вот она, красавица


Зная параметры зеркала, можно делать расчёт телескопа на вышеупомянутом калькуляторе. Сразу не всё понятно, но по мере создания всё становится на свои места, главное, как всегда, не зацикливаться на теории, а совмещать её с практикой.

С чего начать? Я начал, по моему мнению, с самого сложного - узла крепления диагонального зеркала. Как уже писал, изготовление телескопа требует точности, но которая не отменяет наличие возможности регулировки положения того же диагонального зеркала. Без тонкой регулировки - никак. Схем крепления диагонального зеркала несколько, на одной стойке, на трёх растяжках, на четырёх и прочие. У каждого есть свои плюсы и минусы. Так как размеры, вес моего диагонального зеркала, а значит и его крепления, скажем прямо, малы, я выбрал трёхлучевую систему крепления. В качестве растяжек использовал найденный регулировочный лист нержавейки толщиной 0.2мм. В качестве арматуры использовал медные муфты под 22мм трубу с наружным диаметром 24мм, чуть меньшим размера моей диагоналки, а также болт М5 и болты М3. Центральный болт М5 имеет конусную головку, которая просунутая в шайбу М8 работает как шаровая опора, и позволяет наклонять регулировочными болтами М3 диагональное зеркало при регулировке. Сначала припаял шайбу, потом обрезал грубо под углом и подогнал под 45 градусов на листе грубой наждачки. На обе детали (одна залита полностью, вторая 5мм через отверстие) ушло меньше 14мл пятиминутного двухкомпонентного эпоксидного клея Момент. Так как размеры узла малы, очень трудно всё разместить и чтобы всё это нормально работало, плечо регулировки маловато. Но получилось очень и очень не плохо, диагональное зеркало регулируется достаточно плавно. Болты с гайками макал в горячий воск, чтобы не прилипла смола при заливке. Только после изготовки этого узла этого заказал зеркала. Само диагональное зеркало клеил на двухсторонний вспененный скотч.


Под спойлером некоторые фото этого процесса.

Узел диагонального зеркала















Манипуляции с трубой были следующие: отпилил лишнее, ну и так как труба имеет раструб большего диаметра, использовал его для усиления района крепления растяжек диагоналки. Вырезал кольцо и на эпоксидку посадил на трубу. Хотя жесткость трубы и достаточна, на мой взгляд лишним не будет. Далее по мере поступления комплектующих сверлил и вырезал в ней отверстия, снаружи обклеил декоративной плёнкой. Очень важный момент - окраска трубы изнутри. Она должна быть такая, чтобы как можно больше поглощала свет. К сожалению продающиеся краски, даже матовые, совсем не подходят. Есть спец. краски для этого, но они дорогие. Я сделал так - по совету из одного форума покрыл изнутри краской из баллончика, потом засыпал в трубу ржаной муки, закрыл два конца плёнкой, хорошо покрутил - потряс, вытряхнул то, что не прилипло и опять задул краской. Получилось очень прилично, смотришь как в печную трубу.


Крепление главного зеркала делал из двух дисков фанеры толщиной 12мм. Один с диаметром под трубу 152мм, второй с диаметром главного зеркала 114мм. Зеркало ложится на три кружка приклеенных к диску кожи. Главное, чтобы зеркало не было жёстко зажато, я прикрутил уголки, обматал их изолентой. Само зеркало удерживается штрапсами. Два диска имеют возможность двигаться друг относительно друга для регулировки основного зеркала с помощью трёх регулировочных болта М6 с пружинами и тремя стопорными болтами, тоже М6. По правилам в дисках должны быть отверстия, для охлаждения зеркала. Но так как у меня телескоп дома храниться не будет (будет в гараже), то и температурное выравнивание не актуально. Второй диск в таком случае заодно играет роль пылезащитной задней крышки.

На фото крепление уже с зеркалом, но без заднего диска.


Фото самого процесса изготовления.

Крепление основного зеркала



В качестве опоры использовал монтировку Добсона. В интернете масса различных модификаций, в зависимости от наличия инструмента и материалов. Состоит из трёх частей, первая в которой зажимается сама труба телескопа -


Оранжевые круги это отпиленные кругляки трубы, в которые вставлены круги из 18мм фанеры и залитые эпоксидной смолой. Получилась составная часть подшипника скольжения.


Вторая - куда ставится первая, позволяет двигаться трубе телескопа по вертикали. И третья - круг с осью и ножками, на который ставится вторая деталь, позволяющая вращать её.


В местах опирания деталей прикручены кусочки тефлона, позволяющие легко и без рывков перемещать детали одну относительно другой.

После сборки и примитивной настройки прошли первые испытания.


Сразу же появилась проблема. Я пренебрёг советами умных людей не сверлить отверстия под крепления основного зеркала без испытания. Хорошо ещё, что пилил трубу с запасом. Фокусное расстояние зеркала оказалось не 900мм, а около 930мм. Пришлось сверлить новые отверстия (старые заклеены изолентой) и отодвигать дальше основное зеркало. Просто не смог поймать в фокус ничего, приходилось поднимать сам окуляр из фокусёра. Минус этого решения - крепёжные и регулировочные болты с торца не прячутся в трубе. а торчат. В принципе не трагедия.

Снимал с руки мобильником. На тот момент был только один 6мм окуляр, степень увеличения это отношение фокусных расстояний зеркала и окуляра. В данном случае получается 930/6=155 раз.
Испытание номер 1. До объекта 1км.




Номер два. 3км.



Главный результат достигнут - телескоп работает. Понятно, что для наблюдения планет и Луны нужна более качественная юстировка. Для неё был заказан коллиматор, ну и ещё один 20мм окуляр, и фильтр для Луны в полнолуние. После этого все элементы с трубы были сняты и поставлены обратно уже тщательней, прочнее и точнее.

Ну и наконец цель всего этого - наблюдения. К сожалению звёздных ночей в ноябре практически не было. Из объектов, что успел понаблюдать всего два, Луна и Юпитер. Луна выглядит не диском, а величаво проплывающим ландшафтом. С 6мм окуляром вмещается только её часть. А Юпитер с его спутниками просто сказка, принимая во внимание расстояние, которое нас отделяет. Выглядит он как полосатый шарик со звёздочками-спутниками на линии. Цвета этих линий различить не получается, тут нужен телескоп с другим зеркалом. Но всё равно - завораживает. Для фотографирования объектов нужно как дополнительное оборудование, так и другой тип телескопа - светосильный с малым фокусным расстоянием. Поэтому здесь только фото с просторов интернета, точно иллюстрирующая то, что видно с таким телескопом.

К сожалению для наблюдения Сатурна придётся ждать весны, а пока в ближайшем будущем Марс, Венера.

Понятно, что зеркала далеко не все расходы на постройку. Вот далее список того, что было куплено кроме этого.

Вид с воздуха на телескоп FAST в удалённой местности уезда Пинтан Цяньнань-Буи-Мяоского автономного округа провинции Гуйчжоу на юго-западе Китая. Фото: Liu Xu / Xinhua

25 сентября 2016 года крупнейший в мире радиотелескоп Сферический радиотелескоп с пятисотметровой апертурой (Five-hundred-meter Aperture Spherical Telescope, FAST) направил рефлектор в сторону космоса и принял сигнал от далёких галактик . Сегодня состоялась торжественная церемония открытия FAST. До этого в тестовом режиме его запускали несколько раз. В один из тестовых запусков он уловил сигнал от пульсара на расстоянии 1351 световой год от Земли.

По мнению экспертов , этот гигантский научный инструмент демонстрирует амбиции Китая в исследованиях космоса и стремление добиться международного признания передовой китайской науки. Строительство телескопа с неофициальным названием 天眼, то есть Небесный глаз, заняло пять лет и обошлось в $180 млн.

Радиотелескоп FAST диаметром 500 метров превосходит по размеру 305-метровую обсерваторию радиотелескоп Аресибо в Пуэрто-Рико, которая считалась крупнейшей в мире в течение последних 53-х лет. Здесь нужно заметить, что российский радиотелескоп РАТАН-600 имеет диаметр 576 метров, но его апертура не заполнена. Таким образом, именно Аресибо и FAST являются крупнейшими в мире радиотелескопами с заполненной апертурой.


Радиотелескоп в Аресибо

По информации китайских СМИ, у FAST вдвое большая чувствительность, чем у обсерватории в Аресибо, а также в 5-10 раз более высокая скорость исследования звёздного неба.


Сравнение тарелок Аресибо и FAST

Конструкция радиотелескопа FAST состоит из одного рефлектора, в котором соединены между собой 4450 треугольных отражающих панелей со стороной 11 метров, в форме геодезического купола.

Положение каждой панели можно регулировать с высокой точностью - для этого предназначена сетка из стальных канатов с гидравлическими приводами. Таким образом, радиотелескоп фокусируется на определённое направление. FAST может сфокусироваться на любом участке в пределах ±40° от зенита. При этом задействуется участок рефлектора диаметром только 300 метров из общей 500-метровой тарелки. То есть, получается, в названии телескопа FAST две фактические ошибки: ведь апертура телескопа составляет менее 500 метров, а телескоп не сферический.

Сооружение телескопа заняло пять лет. Инженерам и строителям пришлось годами жить в одном из горных ущелий вдали от цивилизации, где в первое время даже не было электричества. Именно это заброшенное место выбрали из 400 вариантов: природная долина в горах на высоте примерно 1000 м над уровнем моря идеально подходила по размеру и являлась естественной защитой от радиочастотных помех (фото чаши телескопа со спутника). Ради научного проекта власти распорядились переселить 65 жителей деревни в этой долине и отселили 9110 жителей из восьми деревень в окрестностях. В августе текущего года сообщалось, что отселённых жителей поселят в новые дома или выплатят большие компенсации из фонда помощи бедным, выдадут банковские кредиты.


Радиотелескоп FAST в сентябре 2015 года, за год до запуска

В радиусе пяти километров вокруг FAST не будет ни одного источника помех вроде . По условиям строительства, в радиусе 5 км должно соблюдаться полное радиомолчание.

Несмотря на необходимость полного радиомолчания, власти решили построить туристические объекты в окрестностях радиотелескопа, в том числе смотровую площадку на соседней горе. Китайские и иностранные туристы могут приехать и своими глазами увидеть это чудо. В таком решении есть резон: например, в Аресибо ежегодно приезжает около 90 000 туристов и 200 учёных.


Радиотелескоп FAST в сентябре 2016 года

На торжественную церемонию запуска FAST в провинцию Пинтан съехались сотни учёных и энтузиастов астрономии со всей страны. Президент Китая

В китайской провинции Гуйчжоу на этой неделе завершено строительство самого большого в мире радиотелескопа с заполненной апертурой, получившего название FAST (Five hundred meter Aperture Spherical Telescope), площадь чаши которого превышает 30 футбольных полей.

Радиотелескоп FAST (Five hundred meter Aperture Spherical Telescope)

FAST получил звание крупнейшего наземного радиотелескопа в мире.

Огромный диск был собран из отдельных 4450 треугольных панелей (отражателей). Отмечается, что диаметр рефлектора FAST составляет 500 метров, что на 200 метров больше, чем у его ближайшего конкурента – известнейшей 300-метровой Обсерватории Аресибо в Пуэрто-Рико.

Один из ученых, задействованный в проекте FAST, однажды сказал, что на его параболической антенне может поместиться столько бутылок с вином, что каждому из 7 млрд жителей Земли хватит по пять бутылок.

С помощью такого аппарата будет возможно вести наблюдение за объектами на расстоянии до 11 млрд световых лет. Новый радиотелескоп позволит наблюдать и открывать различные астрономические объекты и явления, происходящие слишком далеки от Земли и чьи радиосигналы слишком слабы, чтобы их могли захватить небольшие телескопы. Также в задачи радиотелескопа FAST будет входить охота на инопланетян.

«Размер этого телескопа является ключом к его научному назначению. Чем больше телескоп, тем больше радиоволн он сможет улавливать и тем больше неярких объектов затем можно будет увидеть», - говорит Тим О’Брайен (Tim O’Brien) из Манчестерского университета, заместитель директора британской обсерватории Джодрелл Бэнк.

Строительство радиотелескопа FAST началось в юго-западной провинции Гуйчжоу еще в 2011 году, а стоимость проекта составила около 180,000,000 долларов. Для создания телескопа потребовалось переселить более 9 тыс. человек, проживавших в горных уездах Пинтан и Лодянь в радиусе 5 км от стройплощадки. И каждому из них правительство выплатило компенсацию в размере $1800.

Телескоп расположен в естественном кратере, который идеально подходит для размещения огромной вогнутой чаши. Телескоп был разработан таким образом, чтобы отдельные панели могли перестраиваться, отслеживая радиоволны от конкретных объектов. Это придает устройству гораздо больший диапазон и чувствительность по сравнению с другими телескопами.

По словам О’Брайена, FAST позволит провести более тщательные исследования пульсаров – астрономических объектов, испускающих мощные, строго периодические импульсы электромагнитного излучения в основном в радиодиапазоне.

«Мы сможем найти больше пульсаров за пределами нашей Галактики. Телескоп также позволит нам изучать водород в очень далеких галактиках, искать естественные радиоволны, испускаемые экзопланетами, вращающимися вокруг других звезд, а также поможет в поиске радиосигналов внеземных цивилизаций», - отмечает О’Брайен.

Заместитель главы Государственной астрономической обсерватории при Академии наук Китая Чжэн Сяонянь (Zheng Xiaonian) говорит, что наблюдения начнутся в сентябре 2016 года после того, как телескоп будет тщательно протестирован специалистами. FAST, по его словам, будет «глобальным лидером» на протяжении от десяти до 20 лет, и поможет человечеству лучше понять появление вселенной.

Самый большой в мире радиотелескоп «FAST»

Радиотелескоп - это астрономический инструмент, который способен принимать собственное радиоизлучения небесных объектов и исследовать их характеристики.

Он состоит из антенного устройства и чувствительного приемного устройства (радиометра), которое усиливает принятое радиоизлучение и преобразует его в удобную для регистрации и обработки форму.

Подписывайтесь на Квибл в Viber и Telegram , чтобы быть в курсе самых интересных событий.

Чуть больше года назад в Китае начал свою работу самый большой в мире радиотелескоп FAST - сферический радиотелескоп с пятисотметровой апертурой. Его строили с целью изучения истоков и эволюции нашей вселенной. Кроме того, ожидается, что телескоп сможет изучать формирование и движение галактик, гравитационные волны и темную материю, а также молекулы межзвездного пространства.

Первое открытие

Несмотря на огромное количество противоречивой информации, включая то, что тысячи людей потеряли свою землю из-за строительства телескопа и то, что в Китае не хватает специалистов для успешного его запуска, FAST проработал целый год. Совсем недавно руководители лаборатории опубликовали его первые находки. Ими стали пульсары - нейтронные звезды, которые вращаются вокруг своей (немного наклоненной) оси с огромной скоростью.

Значение телескопа для науки

Согласно китайской газете China Daily, телескопу удалось обнаружить несколько десятков ранее неизвестных пульсаров. Существование и местонахождение некоторых из них подтвердила радиообсерватория в Австралии.

По словам директора радиотелескопа FAST, подобные результаты являются яркой демонстрацией удачной работы обсерватории и специалистов. Подобные открытия говорят о том, что FAST окажется крайне полезен глобальному научному сообществу, поскольку он достаточно мощен для восприятия сигналов пульсаров далеко за пределами нашей галактики.

Кроме того, чувствительность радиотелескопа гарантирует, что он окажется важным инструментом в изучении эволюции вселенной и ее таинственного состава (темная материя и темная энергия).

Чувствительность телескопа к радиоволнам, испускаемым пульсарами, также демонстрирует вероятность того, что FAST окажется востребованным в дальнейшем изучении гравитационных волн.

Ожидание будущих открытий

Ожидается, что китайский радиотелескоп FAST сможет удвоить количество известных нам пульсаров в галактике Млечный путь. На сегодня в пределах нашей галактике нам известны 2700 пульсаров, первый из которых был обнаружен в 1967 году.

Кроме поиска радиоволн, издаваемых пульсарами при их вращении, телескоп занимается поисками сигналов инопланетных форм жизни. Специалисты не возлагают огромных надежд на обнаружение внеземной цивилизации, вместо этого они стремятся найти как можно больше возможностей и областей, в которых FAST смог бы пригодиться современной астрофизике.

К примеру, совсем скоро радиотелескоп начнет поиск и изучение сложных межзвездных молекул, а также нейтрального водорода, находящегося на просторах вселенной.