Принципиальная схема охлаждения судового дизеля. Холодильные машины на кораблях. Система забортной воды

Система забортной воды

Трубопровод забортной воды обеспечивает:

прием воды электронасосами охлаждения и опреснительной установки из перемычки, куда забортная вода подается из днищевого или бортового кингстонных ящиков через фильтры;

прокачку холодильников пресной воды, и отвод воды автоматически за борт или на циркуляцию;

подачу воды на опреснительную установку.

Основные технические данные

Система охлаждения забортной водой ГД

Для приема забортной воды в систему охлаждения в МКО предусмотрены днищевой и бортовой кингстонные ящики, из которых вода через фильтры поступает в приемный ящик забортной воды. Система обслуживается двумя охлаждающими насосами RVD-450E, один из которых является резервным. Резервный насос включается автоматически при падении давления воды в системе. Насос принимает забортную воду из приемного ящика забортной воды и подает через регулятор температуры к холодильникам пресной воды.

Этот регулятор, в зависимости от температуры забортной воды на выходе из насосов, направляет воду из холодильников за борт через невозвратно-запорный клапан и на прием к охлаждающим насосам через задвижку и невозвратно-запорный клапан в кингстонный ящик или в приемную магистраль охлаждающих насосов.

К одному из главных охлаждающих насосов подведена магистраль аварийного осушения МО через клапан.

Воздушные трубы из кингстонных ящиков объединены и выведены на открытую часть ВП и заканчивается гуськом.

Для выпуска воздуха из холодильников предусмотрены трубы, которые присоединены к воздушной трубе из кингстонных ящиков.

Рисунок 20. Принципиальная схема охлаждения забортной водой СЭУ

Система пресной воды

В систему охлаждения пресной водой входят:

система пресной воды охлаждения главного двигателя;

система пресной воды охлаждения дизель-генераторов.

Система охлаждения пресной водой предназначена для:

охлаждения главного двигателя и дизель-генераторов;

прогрева неработающего главного двигателя подогревателем пресной воды;

подачи греющей воды на водоопреснительные установки;

Общее описание и основные технические данные

системы охлаждения главного двигателя пресной водой

Заполнение водой системы производится электронасосом перекачки пресной воды из цистерны запаса котельной воды через клапаны и в расширительную цистерну. Вода подается также в цистерну присадок через клапан, а из нее через клапан и кран - в расширительную цистерну.

Из расширительной цистерны через клапан производится заполнение системы водой, а также пополнение утечек во время работы системы.

Система охлаждения главного двигателя обслуживается двумя охлаждающий электронасосами пресной воды, один из которых является резервным. Резервный насос включается автоматически при падении давления воды в системе.

К главному двигателю вода поступает через регулятор температуры воды, подаваемой насосом, регулирует количество воды, проходящей через холодильники, обеспечивая необходимый температурный режим охлаждения двигателя.

Пресная вода из главного двигателя поступает в деаэрационный бак, в котором происходит отделение воздуха и паровоздушной смеси. На магистрали пресной воды после охлаждающих насосов ГД производится отбор греющей воды для опреснительных установок.

Для подогрева неработающего главного двигателя в системе предусмотрен подогреватель пресной воды, к которому подается пар из системы обогревания.

Система охлаждения дизель-генераторов пресной водой.

Заполнение водой системы производится электронасосом перекачки пресной воды из цистерны запаса котельной воды через клапаны.

Вода подается в расширительную цистерну дизель-генераторов оттуда через клапана производится заполнение системы, а также пополнение утечек во время работы системы.

Система пресной воды каждого дизель-генератора обслуживается своим центробежным насосом, навешанным на двигатель.

Подача воды в рубашки дизель-генераторов производится через холодильники пресной воды, задвижки.

Для поддержания постоянной температуры пресной воды, у выпуска охлаждающей воды из двигателей установлен термостатический клапан.

Для постановки неработающего дизель-генератора в "горячий" резерв в системе пресной воды двигателя предусмотрен электрический подогреватель.

Рисунок 21. Принципиальная схема охлаждения СЭУ пресной водой

В случае повреждения системы охлаждения пресной водой дизель-генераторы могут охлаждаться забортной водой при снятии глухих фланцев, разделяющих системы пресной и забортной воды.

Отвод паровоздушной смеси от дизель-генераторов осуществляется в расширительную цистерну дизель-генераторов.

Трубопроводы системы окрашены под цвет помещения. На трубопроводах пресной воды нанесены отличительные знаки два широких кольца зеленого цвета.

Контрольно-измерительные приборы.

Для контроля за работой системы предусмотрены манометры, местные и дистанционные термометры, сигнализаторы нижнего уровня, сигнализаторы давления и температуры.

Система сжатого воздуха

Система сжатого воздуха среднего и низкого давления обеспечивает:

Заполнение сжатым воздухом от электрокомпрессоров баллонов пускового воздуха ГД и ДГ, низкого давления заполнение баллонов аппаратов СО;

подачу сжатого воздуха из баллонов в пусковые устройства двигателей при запуске;

продувание масляных фильтров главного двигателя;

судовые нужды, пневмоинструмент и пневмоцистерны.

Система сжатого воздуха высокого давления обеспечивает:

Заполнение от электрокомпрессора баллонов от пусковых баллонов аварийного дизель-генератора и дизеля мотопомпы баллонов пневмопитания системы и баллонов спасательных шлюпок.

Системы воздухоснабжения и газовыпуска

Все грузовые и отстойные танки оборудованы газоотводной системой, автономной для каждого, танка и предназначенной для обеспечения газообмена между грузовым танком и атмосферой.

Каждый грузовой и отстойный танк оборудован высокоскоростным газовыпускным устройством и вакуумным клапаном с пламяпрерываюшей сеткой. Выпуск газа из танков через высокоскоростное газовыпускное устройство осуществляется со скоростью не менее 30 м/с.

Рисунок 22. Принципиальная схема системы сжатого воздуха СЭУ

Площадь сечения труб автономной газоотводной системы обеспечивает удаление газов из одного танка при грузовых операциях с производительностью не более 1100м3/ч.

Система газовыхлопа главного и вспомогательных двигателей

Система газовыхлопа обеспечивает отвод выхлопных газов от главного двигателя через утилизационный котел, вспомогательных дизель-генераторов, аварийного дизель-генератора и дизеля мотопомпы через глушители в атмосферу. Утилизационный котел и все глушители оборудованы искроулавливателями.

Рисунок 23. Принципиальная схема газовыпускной системы СЭУ

Выхлопные трубы изолированы и обшиты металлическим кожухом.

В системе газовыхлопа предусмотрен постоянный дренаж гудрона и аварийный слив воды от утилизационного котла.

Холодильные машины на кораблях служат для разных целей - кондиционирования кают, охлаждения трюмов, заморозки при вылове рыбы. Функции, возложенные на машину, всецело зависят от назначения и типа судна. Например, пассажирские корабли нуждаются в постоянном качественном вентилировании, чтобы пассажиры чувствовали себя комфортно. Также необходимо предусмотреть трюмы для хранения запаса продовольствия на весь срок пребывания в плавании.Холодильные машины на кораблях для вылова рыбы обычно имеют более богатый набор оборудования. Оно необходимо для быстрого охлаждения свежевыловленной рыбы, ее заморозки и длительного хранения. Очень важно сохранить товар свежим до момента поставки его на рыбоперерабатывающие предприятия и склады.

5 причин приобрести холодильные машины от АквилонСтройМонтаж

  1. Нестандартный подход к разработке холодильных машин
  1. Использование технологий энергосбережения
  1. Лучшее показатели цены и качества на рынке
  1. Минимальные сроки изготовления нестандартных холодильных машин
  1. Климатическое исполнение для всех регионов России

ОСТАВИТЬ ЗАЯВКУ

То есть в рамках ведущихся технологических процессов установки должны решать следующие задачи:

    Остужать только что выловленную рыбу до требуемой температуры.Генерировать лед, пригодный для охлаждения продукции.Обеспечивать быструю заморозку с последующим хранением.Создавать нужный диапазон температуры для засоленной и консервированной рыбы.
На кораблях, уходящих в длительное плавание, обязательно предусматриваются качественные системы кондиционирования воздуха. Такие машины обычно являются стационарными агрегатами особого морского исполнения. Конструктивно они несколько отличаются от машин, применяемых на обычном производстве:Чиллеры в системе охлаждения В тех случаях, когда корабль имеет неограниченный район плавания, в состав системы центрального кондиционирования обязательно включается чиллер. Это делается с той целью, что чиллер прекрасно справляется с охлаждением и в то же время уменьшает энергозатраты.Особенно предпочтительно использовать системы с чиллерами для обеспечения нужного температурного режима в трюмах, так как при непосредственном охлаждении не получается избежать утечек фреона - целостность контура нарушается под действием постоянной качки и вибрации. С чиллером таких проблем не возникает.Конструктивные особенности судовых чиллеров По параметрам холодопроизводительности и принципу работы они ничем не отличаются от чиллеров, применяемых на суше. Разница состоит лишь в использовании более надежных материалов и некоторых конструктивных изменениях. Как и при выборе остального оборудования, нужно учитывать более сложные условия эксплуатации чиллеров, способные привести к выходу из строя. Судовые чиллеры имеют дополнительные крепления, имеют меньшие размеры, а контур защищается от постоянного воздействия влаги.Чиллеры часто используются на судах в системах охлаждения двигателей. Рабочей жидкостью в них является забортная вода. В некоторых случаях может использоваться несколько чиллеров одновременно.Любые установки, необходимые для полноценного оснащения судов, вы найдете в компании «АквилонСтройМонтаж». Современные решения, новые технологии, компетентные специалисты, способные провести максимально точные расчеты - все это ждет вас в нашей компании.

Системы охлаждения энергетической установки служат для отвода теплоты от рабочих втулок, крышек, поршней главных и вспомогательных дизелей, для охлаждения масла и воздуха (в двигателях с надувом). В современных дизельных установках таких систем четыре:

1) система охлаждения пресной водой цилиндровых втулок, крышек и газовых турбин;

2) системы охлаждения пресной водой или маслом головок поршней;

3) система охлаждения пресной водой, маслом или топливом форсунок;

4) система охлаждения забортной водой пресной воды и масла в системах охлаждения и смазки и охлаждения воздуха в системе наддува.

Принципиальная схема системы охлаждения зависит от рода жидкости, охлаждающей форсунки и поршни. Двигатели, у которых поршни охлаждаются маслом, а форсунки – топливом, имеют один контур пресной воды, который служит для охлаждения втулок, крышек, цилиндров и корпусов газотурбонагревателей; для охлаждения поршней; для охлаждения форсунок.

Каждый контур обслуживается своими циркуляционными насосами, теплообменниками и расширительной цистерной. Основным преимуществом такой системы является то, что пресная вода, охлаждающая цилиндры, не загрязняется маслом, попадающим в систему с поверхности труб телескопического устройства охлаждения поршней, и топливом, которое может попадать в воду через плоскость разъема форсунок.

Принципиальная схема контура пресной воды (рис. 3) для охлаждения цлиндров и газотурбокомпрессоров (ГТК) включает циркуляционные насосы 5, расширительную цистерну 13, водоохладители 4, включенные параллельно, байпасный клапан 3, управляемы термодатчиком, водяные коллекторы 7 и 1. Насосы подают воду в коллектор 7, откуда она поступает на охлаждение цилиндров и корпусов 8 ГТК и выходит в коллектор 1. Воду, выходящую из двигателя и корпусов ГТК, можно пропускать через водоохладители или пропускать часть воды через байпасный клапан 3 в приемную полость насосов помимо водоохладителя, поддерживая заданную температуру на всех режимах работы двигателя. Труба 10 соединяет приемные полости насосов с расширительной цистерной, обеспечивая необходимый подпор. Воздух и водяные пары вместе с водой отводятся из полостей охлаждения двигателя и ГТК по трубам 15 в расширительную цистерну. Труба 12 служит для пополнения воды в системе. По трубе 11, в которой имеется смотровое стекло. Вода из расширительной цистерны в случае ее переполнения переливается в междудонную. Воздух и пары воды удаляются из системы в атмосферу по трубе 14. При подготовке главного двигателя к пуску горячая вода, выходящая из системы охлаждения дизель –генераторов, поступает в коллектор 7. При работе главного двигателя дизель-генераторы могут охлаждаться водой, которая отводится по трубам 2,9 или 6.

Рис. 3 Принципиальная схема контура пресной воды системы охлаждения.

Система пресной воды , так же как и система забортной воды, во время хода обслуживается главным насосом пресной воды, а на стоянке – портовым насосом пресной воды. Для судов с неограниченным районом плавания в системе охлаждения устанавливают два водоохладителя, каждый из которых обеспечивает отвод теплоты при нагрузке главного двигателя 60 %, вспомогательных двигателей 100% и температуре забортной воды 30 0 С.

Давление воды в системе охлаждения для каждого типа установки указывают в инструкции. Оно составляет 0,15-0,25 МПа, причем давление в системе пресной воды должно быть на 0,03-0,05 МПа больше, чем в системе забортной воды. Это нужно для того, чтобы при нарушении плотности холодильников забортная вода не могла попасть в систему пресной воды.

Температуру входящей и выходящей воды также указывают в инструкции. Она должна быть в пределах 50-60 0 С на входе и 60-70 0 С на выходе. В высокооборотных тронковых дизелях температура воды на выходе из дизеля поддерживается в пределах 75-90 0 С. Температура пресной воды в системе охлаждения регулируется перепуском выходящей из дизеля воды мимо водоохладителя во всасывающую магистраль насоса 5. Перепуск воды осуществляется регулятором температуры, который открывает клапан 3 или заслонку для перепуска воды мимо холодильника.

Схема системы забортной воды показана на рис. 4. Вода из бортовых 10 или днищевых 12 кингстонов через фильтры 11 поступает к насосам забортной воды 9. Работающий насос подает ее к водо — водяным охладителям 6, к маслоохладителям 7 и воздухоохладителю 4. Все теплообменники включены параллельно. Маслоохладитель 7 и воздухоохладитель 4 имеют байпасные трубопроводы 5, позволяющие регулировать температуру масла и продувочного воздуха путем перепуска части воды мимо охладителей. Через клинкеты 1 правого и левого бортов вода уходит за борт. Трубопровод рециркуляции 2 при плавании во льдах перепускает часть воды в кингстонный ящик, откуда она вместе с водой, поступающей из кингстона, направляется в приемную полость насоса. Тем самым исключается срыв подачи воды при засорении кингстона мелким льдом или при замерзании его приемной решетки. Для прокачки всех теплообменников используют балластный насос 8, который принимает воду из носовых цистерн, подает ее по системе забортной воды, а затем по трубе 3 она идет в кормовую цистерну. Зная производительность насоса и емкость цистерн, производят попеременную перекачку воды с носа на корму и обратно, не останавливая насоса. По трубам 13 вода идет на прокачку теплообменников дизель – генераторов и компрессоров.

Система охлаждения судовой энергетической установки предназначена для охлаждения деталей главных и вспомогательных двигателей, нагревающихся от теплоты сгорания топлива (так называемые «огневые поверхности) с тем, чтобы снизить их температурную деформацию и повысить прочность, а также для отвода теплоты от рабочих сред (масла, топлива, воды и наддувочного воздуха). Кроме того, с помощью системы охлаждения обеспечивается отвод теплоты от других различных механизмов, устройств, приборов, размещенных в машинно-котельном отделении.

Режим охлаждения двигателя оказывает влияние на эффективность его работы. С повышением температуры охлаждающей воды индикаторный КПД двигателя падает, что объясняется уменьшением коэффициента наполнения, периода задержки воспламенения и скорости нарастания давления. Вместе с тем благодаря снижению вязкости масла уменьшаются потери на трение (механический КПД растет) и износ деталей двигателя. В результате при изменении температуры воды от 50 о до 150 о С наблюдается незначительное увеличение эффективного КПД дизеля.

Температурный уровень охлаждения влияет на количество и характер лако- и нагарообразования, выпадения осадка и окисления масла. С ростом температуры ускоряется окисление масла, однако лакообразование уменьшается. Таким образом, повышение температуры охлаждающей воды в двигателе сопровождается некоторым улучшением его показателей. Кроме того, наблюдается благоприятное с точки зрения утилизации теплоты перераспределение потоков вторичных энергоресурсов: количество теплоты, отводимой отходящими газами, возрастает, а охлаждающей водой - уменьшается.

Система охлаждения состоит из следующих основных элементов: насосов пресной и забортной воды, фильтров, расширительных и сточных цистерн и цистерн для приготовления присадок, охладительной пресной воды, подогревателей пресной и забортной воды, приемных и отливных устройств, трубопроводов с запорной и регулирующей арматурой и контрольно-измерительных приборов. Охладители предназначены для отвода в воду избыточной теплоты от охлаждающих жидкостей и наддувочного воздуха. Расширительная цистерна служит для компенсации изменений объема воды в системе вследствие изменения ее температуры, для восполнения потерь воды в системе из-за утечек и испарения, а также удаления из системы воздуха и водяных паров. Терморегуляторы должны автоматически поддерживать температуру воды и охлаждаемых жидкостей в заданном диапазоне.

В настоящем проекте применяется трехконтурная система охлаждения с центральным охладителем пресной воды. Такой выбор обусловлен стремлением повысить надежность всего охлаждаемого оборудования, где для отвода тепла используется только пресная вода, обладающая меньшей коррозионной активностью. В связи с тем, что в заданном проекте фидерного контейнеровоза укомплектована дизелем 5G50ME - B9, имеющих два контура охлаждения (низкотемпературный и высокотемпературный), то и контур пресной воды состоит из двух частей. Согласно технической документации на дизель 5G50ME - B9 фирмы MAN B&W для охлаждения втулок цилиндра с целью снизить тепловые потери с охлаждающей водой используется пресная вода с температурой на входе в зарубашечное пространство 75°С и 85°С на выходе из него. Для обеспечения этого требования в контуре пресной воды системы охлаждения выделяется специальный высокотемпературный контур, который имеет сообщение с низкотемпературным контуром пресной воды через регулировочный клапан с термостатом. Во избежание вскипания воды в зарубашечном пространстве и охлаждающих каналах крышки цилиндров, где охлаждаются огневые поверхности, в контуре поддерживается давление не менее 0,25 МПа.

Устойчивая циркуляция пресной воды достигается благодаря постоянному отводу паровоздушной смеси из полостей охлаждения, обеспечению полного заполнения водой циркуляционного контура (периодическим пополнением воды) и возможности изменения объема воды из-за динамичности процессов охлаждения во время эксплуатации. Для этого в каждой системе последовательно с основным контуром циркуляции воды (или параллельно ему) устанавливают дренажно-компенсаторный контур с расширительной цистерной, связанной с атмосферой. В этой цистерне происходит выделение паровоздушной смеси из воды. Она служит для пополнения утечек воды и является буферной емкостью при изменении объема воды.

Согласно требованиям Регистра каждое машинное отделение должно иметь не менее двух кингстонных ящиков циркуляционной или охлаждающей воды, обеспечивающих приём забортной воды в любых условиях эксплуатации. В настоящее время, предусматривают кингстонно-распределительный канал, в который вода поступает из кингстонных ящиков, а затем через клинкетные задвижки - в систему охлаждения. Отвод воды за борт осуществляется через невозвратно-запорные клапаны. Во избежания попадания нагретой воды в приёмные отверстия, отливные и приёмные отверстия разносят по длине судна, располагая последние в нос от отливных. Отливные забортные отверстия размещаются на днище или на борту, как правило, не менее 300 мм ниже ватерлинии наибольшей осадки.

Принцип действия и состав системы охлаждения ГД.

На рисунок 7 изображена схема системы охлаждения ГД, состоящая из трех контуров (два контура пресной воды, имеющих сообщение, и контур забортной воды). Забортная вода поступает в систему охлаждения через днищевые (поз. 2) и бортовые (поз. 1) кингстонные ящики. Затем забортная вода, пройдя через кингстонный клапан (поз. 3) и фильтр грубой очистки (грязевые коробки) (поз. 4), поступает в кингстонный канал (поз. 5), в который забортная вода может поступать от другого кингстонного ящика. Из кингстонного канала очищенная вода забирается насосом забортной воды (поз. 6) и подается в центральный охладитель пресной воды (поз. 7), где она нагревается и отводится в отливной ящик (поз. 8). В случае очень низкой температуры забортной воды часть нагретой забортной воды после центрального охладителя с помощью терморегулятора возвращается в кингстонный ящик, поддерживая таким образом требуемую температуру забортной воды на входе центрального охладителя.

В свою очередь пресная вода после охлаждения в центральном охладителе поступает на вход циркуляционного насоса низкотемпературного контура (НКТ) пресной воды (поз. 10), где получив необходимую энергию, идет на параллельно включенные охладитель масла ГД (поз. 11) и охладитель наддувочного воздуха (поз. 12). Пройдя через указанные теплообменные аппараты подогретая пресная вода после слияния разделяется на два потока. Один поток через дроссельную шайбу (поз. 13) проходит в усреднительный узел (поз. 14), где смешавшись с излишками пресной воды высокотемпературного контура (ВТК) возвращается к центральному охладителю, замыкая таким образом низкотемпературный контур. Для регулирования температуры воды низкотемпературного контура часть ее после усреднения с помощью автоматического клапана (поз. 15) направляется в обход центрального охладителя пресной воды. Второй поток пресной воды после слияния подходит к клапану терморегулятора температуры пресной воды высокотемпературного контура (поз. 16), который дозирует количество воды низкотемпературного контура, поступающей на разбавление нагретой воды ВТК. После терморегулятора (поз. 16) пресная вода высокотемпературного контура поступает к циркуляционным насосам ВТК (поз. 17). Эти насосы, сообщая воде необходимую энергию, подают ее к главному двигателю (поз. 18) для охлаждения цилиндров. Нагретая вода из главного двигателя поступает в пароотводящий клапан (поз. 19), установленный с целью удаления из системы паров воды и воздуха, которые образуются в незначительном количестве на огневых поверхностях двигателя и могут накапливаться в системе. Выделившийся в этом клапане воздух и пар отводятся в расширительную цистерну (поз. 22) по трубопроводу (поз. 24). Выйдя из пароотводящего клапана, вода, разделившись на два параллельных потока, идет частью через утилизационную опреснительную установку (поз. 20) и частью через дроссельную шайбу (поз. 21), которая создает необходимый перепад давления для работы опреснительной установки. Указанные параллельные потоки воды, пройдя дроссельную шайбу и опреснительную установку, сливаются и подходят к клапану терморегулятора температуры пресной воды высокотемпературного контура, который пропускает необходимую часть горячей воды на смешение с водой НТК, а излишки направляются в усреднительный узел.

Для компенсации объема воды в замкнутом контуре пресной воды при ее нагреве в период работы двигателя и ее охлаждении в период стоянки устанавливается расширительная цистерна (поз. 22), которая с помощью трубопровода компенсационной воды (поз. 23) подключается на вход циркуляционного насоса ВТК, надежно обеспечивая таким образом ему необходимый кавитационный запас.

Кроме того, при помощи специального трубопровода (поз. 25) через расширительную цистерну в систему вводится дополнительная вода, компенсирующая утечки и испарение, а также вводятся различные присадки. При прогреве двигателя перед пуском в системе охлаждения цилиндров используется паровой подогреватель (поз. 26).

Определение параметров основного оборудования для комплектации системы охлаждения.

В расчёт системы охлаждения в объеме данного проекта входит определение основных параметров для ее комплектации следующим оборудованием - насосами пресной и забортной воды, теплообменными аппаратами.

Производительность насоса пресной воды.

Производительность насоса забортной воды.

где W 4 =41,7

По производительности из типоразмерного ряда подбираем насос забортной воды марки НЦВ 315/10А-1-11 производительностью 315м 3 / час

Определение количества теплоты отводимого водой.

Отвод теплоты от пресной воды - ;

Отвод теплоты с маслом - ;

Отвод теплоты от продувочного воздуха - 5685 = 2840 .

Расчет охладителя пресной воды.

где: = 1100 кВт - отвод теплоты от пресной воды;

= (25003500) Вт/ - коэффициент теплопередачи от пресной воды к забортной, для пластинчатого охладителя;

Принимаем 3000 Вт/.

Температурный напор, .

где: - разность температур пресной и забортной воды на том конце теплообменника, где она имеет большее значение;

Температура пресной воды на входе в охладитель;

Температура пресной воды на выходе из охладителя,

=(30 - 35) - температура забортной воды после охладителя;

принимаем 35

=(40 - 45) - температура забортной воды после охладителя;

Принимаем 45

70 - 35 = 35

60 - 45 = 15

Расчет маслоохладителя

Определение площади теплопередающей поверхности

где: - отвод теплоты маслом;

350 Вт/ - коэффициент теплопередачи от масла к забортной воде, для пластинчатого охладителя;

Температурный напор, .

где: - большая разность температур;

Меньшая разность температур.

Температура масла на входе в охладитель;

Температура масла на выходе из охладителя,

35 - температура забортной воды после охладителя.

55 - 30 = 25

45 - 35 = 10

Расчет воздухоохладителя

Определение площади теплопередающей поверхности

где: - отвод теплоты от продувочного воздуха;

=(5075) Вт/- коэффициент теплопередачи от воздуха к забортной воде;

Принимаем 60 Вт/.

Температурный напор, .

Где: - большая разность температур;

Меньшая разность температур.

Температура воздуха на входе в охладитель;

Температура воздуха на выходе из охладителя.

30 - температура забортной воды после охладителя;

40 - температура забортной воды после охладителя.

Объём расширительной цистерны.

Система холодоснабжения с одним чиллером наружной установки с осевыми вентиляторами - одна из самых распространенных и достаточно простых систем. В качестве теплоносителя в системе, как правило, используется вода, в отдельных случаях возможно применение теплоносителей с низими температурами замерзания (раствор этиленгликоля, рассолы и т.д.).

Циркуляция теплоносителя в системе осуществляется с помощью насосной группы. На схеме показанной в качестве примера, насосная группа состоит из двух насосов, один из которых основной, второй резервный.

Расширительный мембранный бак служит как для предотвращения гидравлических ударов при работе насосов, так и для компенсации изменения объема теплоносителя вследствие изменения его температуры.

Бак - аккумулятор предназначен для увеличения тепловой инерционности системы и сокращения количества циклов пуска/остановки холодильной машины.

При использовании потребителей с переменным расходом теплоносителя (например, фанкойлов с регулированием холодопроизводительности изменением расхода двухходовыми клапанами) необходимо обеспечить постоянный расход жидкости через теплообменник испарителя холодильной машины. На схеме показан вариант с установкой регулятора перепада давлений на перемычке между распределительными коллекторами для обеспечения постоянного расхода на испарителе. В случае использования потребителей с постоянным расходом (трехходовые клапаны с байпасом на теплообменниках потребителей) перемычки с регулятором перепада не требуется.

Недостатки рассматриваемой схемы системы холодоснабжения:

В ряде случаев (при значительной холодопроизводительности системы, необходимости частичного резервирования холодильного оборудования) возникает необходимость в установке нескольких холодильных машин, работающих на одну систему холодоснабжения. В качестве примера приведена схема с установкой двух чиллеров с воздушным охлаждением конденсаторов .

Принцип работы системы аналогичен принципу работы системы с одним чиллером .

Недостатками рассматриваемой схемы системы холодоснабжения являются:

  • необходимость частичного сезонного слива/заправки теплоносителя (в случае использования воды) и как следствие - повышенная коррозия трубопроводов и арматуры.
  • колебания температуры теплоносителя при включении/ отключении одной из холодильных машин.
  • невозможность круглогодичной эксплуатации системы.