Самодельный ветровой генератор для дома. Как сделать ветряной генератор своими руками. Особенности сборки ветрогенератора из стиральной машины своими руками

Технология изготовления домашней ветроэлектростанции (простой ветряк).

Технология изготовления домашней ветроэлектростанции (простой ветряк ) . Потребность в электроэнергии появляется сразу, как только мы становимся обладателями садового участка или дома в сельской местности. В этом случае на помощь могут придти индивидуальные электростанции, как работающие на нефтепродуктах, так и использующие энергию ветра, воды и т.п., но купить такие электростанции негде – их нет в продаже. Наиболее экологически чистый источник – ветер. Одну из таких электростанций можно сделать вручную, например ветроэлектростанцию (ВЭС) . С помощью пропеллера электрогенератором, который заряжает аккумулятор через выпрямительное устройство. ВЭС использует восполняемый и бесплатный источник энергии и не нуждается в постоянном присмотре. Однако электроэнергия вырабатывается крайне неравномерно – только в ветреную погоду. Впрочем, малые ветросиловые установки (ветроагрегаты) , подключенные к аккумуляторной батарее, этот недостаток почти компенсируют.

Ветроэлектростанции в заводских условиях, как правило, производятся лопастные пропеллерные двигатели. В отличие от роторных, лопастные ветроэлектростанции имеют преимущество – более высокий КПД. Но лопастные двигатели гораздо сложнее изготовить, поэтому если Вы хотите сделать ветроэлектрогенератор своими руками, а проще – самодельную ветроэлектростанцию, специалисты советуют изготавливать именно роторные двигатели.

Рис. 1. Схема роторной ветроэлектростанции :

1 - лопасти
2 - крестовина
3 --- вал
4 - подшипники с корпусами
5 - соединительная муфта
6 - силовая стойка (швеллер № 20)
7 - редуктор
8 - электрогенератор
9 - растяжки (4 шт.)
10 - лестница.

Важно: роторный двигатель нужно поднять не менее чем на 3-4 метра над землей. Тогда ротор будет находиться в зоне свободного ветра, а помехи от рядом стоящих строений останется ниже его. , поднятая над землей будет выполнять еще одну функцию - функцию молниеотвода, а для местности с невысокими строениями это немаловажно.


В конструкции, разработанной В. Самойловым, ротор состоит из 4 лопастей, это обеспечивает ему более равномерное вращение. Ротор – одна из самых важных частей ветряка. Его конструкция и размеры лопастей играют особую роль – от их расположения и конструкции зависит мощность и скорость вращения вала приводящего в движение редуктор ветряной электростанции. Чем больше рабочая площадь лопастей, которые образуют обтекаемую поверхность, тем меньше количество оборотов ротора.

Рис. 3. Двухъярусное роторное колесо:

1 - подшипник
2 - корпус подшипника
3 - дополнительное крепление вала четырьмя растяжками
4 - вал.
Ротор совершает обороты благодаря аэродинамической несимметричности. Ветер, дующий поперек оси ротора, «соскальзывает» с округлой части лопасти и попадает в ее противоположный «карман». Разница в аэродинамических свойствах округлой и вогнутой поверхностей создает тягу, которая, вращает ротор. Такой двигатель имеет больший крутящий момент. Мощность ротора диаметром 1 м превышает мощность пропеллера с тремя лопастями диаметром 2 м.
При порывах ветра роторные ветродвигатели, работают более стабильно, чем винтовые. И еще не маловажный факт, роторы работают более плавно, издают меньше шума, работают при любом направлении ветра без дополнительных приспособлений, но минус в том, что скорость их вращения ограничена 200-500 об/мин.
Но увеличение оборотов асинхронного генератора не даст рост напряжения. Поэтому мы не будем рассматривать автоматическое изменение угла лопастей ротора для различных скоростей ветра.
Есть разные виды роторных ветроэлектроэлектростанций которые можно сделать своими руками. Вот некоторые из них:

Примеры роторных колес.


Четырехлопастное роторное ветряное колесо, КПД до 15%. Двухъярусное роторное колесо проще в изготовлении, имеет более высокий КПД (до 19%), а также развивает большее число оборотов в сравнении с четырехлопастным. Но, для того чтобы сохранить надежность установки, целесообразно увеличивать диаметр вала. У ротора Савониуса меньшее количество оборотов по сравнению с двухлопастным ротором. Его КПД не превышает 12%. Такой двигатель, в основном применяется для привода поршневых агрегатов (насосов, помп и т.д.). Карусельное ветряное колесо - одна из самых простейших конструкций. Этот ротор способен развивать сравнительно низкие обороты и имея малую удельную мощность, имеет КПД не более 10%.

Мы рассмотрим ветроэлектростанцию которую можно сделать своими руками , собранную на основе четырехлопастного ротора. Энергию ветра можно использовать и в качестве етряного насоса для воды , как отдельную установку или совмещенную с электростанцией.

Лопасти ветроколеса можно сделать из железной 100, 200 литровой бочки. Ее необходимо разрезать «болгаркой», не рекомендуют резать бочку любой сваркой, так как свойства метала по шву резки очень сильно изменяться. Усиливать края изготовленной лопасти можно, закрепив на них прутья арматуры или полосками металла диаметром от 6 до 8 мм.
Лопасти первого ротора закрепляем на двух крестовинах двумя болтами М12-М14. Верхняя крестовина изготавливается из стального листа толщиной 6-8 мм. Между бортами лопастей и валом ротора необходим зазор 150 мм. Нижнюю крестовину нужно сделать более прочной, так как на нее приходится основной вес лопастей. Для ее изготовления, берем швеллер длиной не менее 1 м (это зависит от применяемой бочки), со стенкой 50-60 мм
Мачта и основной вал.
В предлагаемой ветро-электроустановке рама из уголка для крепления электрогенератора закреплена на стойке, которая изготовлена из швеллера. Нижний конец стойки соединен с угольником, забитым в землю. Вал ротора целесообразней собрать из двух составляющих, это даст Вам удобство при расточке его концов под подшипники. Подшипники (в корпусах (буксах)),
соответствующие по размерам валу, крепятся на швеллере болтами. Части вала соединяют между собой. Диаметр вала должен составлять не менее 35-50 мм.
К одной из полок швеллера самодельной ветроэлектростанции привариваем отрезки трубы длиной 500 мм м диаметром 20 мм, которые будут выполнять роль лестницы. Стойку вкапываем в землю не менее, чем на 1200 мм, а также для дополнительной устойчивости закрепляем ее 4-мя растяжками. Для защиты от коррозии, энергоустановку необходимо покрасить краской основой которой является олифа.

Рис. 4. Возможные схемы крепления роторов к вертикальному валу:


а, б - карусельные колеса;
в - ротор Савониуса.
Нижняя часть рисунка.Лопасть ветряка, сделаная
из 1/4 бочки и схема разреза:
1 - отверстие крепления к крестовине
2 - усиление борта
3 - контур лопастей.

Подробности Опубликовано: 06.11.2017 17:09

Пошаговое руководство (максимально детально процесс изложен в видеоматериале), рассказывающее о том, как легко и дешево сделать ветряк, было создано изобретателем Дениэлом Коннеллом (Daniel Connell). С инструкцией в оригинале можно ознакомиться на сайте

Описание

Вертикально-осевая ветровая турбина использует энергию ветра для производства электроэнергии за счет генераторов, а также может приводить в действие воздушные и водяные насосы для охлаждения, ирригации и прочего.

Конструкция турбины Lentz2 (названа по имени автора - Ed Lenz) является на 35-40% более эффективной и может быть построена из подручных средств, дешевых материалов и даже металлолома. Вариант с шестью лопастями два человека смогут собрать примерно за четыре часа без особых усилий, потратив всего 15-30 долларов.

Ветрогенератор с тремя лопастями успешно выдержал испытание при устойчивой скорости ветра до 80 км/ч, а шесть лопастей отлично справляются с ветром до 105 км/ч. Конечно, оба варианта способны на большее, но установить на сколько конкретно пока не удалось. На сегодняшний день дольше всего работает турбина, установленная ещё в начале 2014 года, выдерживая штормы, при этом видимых следов износа пока не наблюдается.

Для этой конкретной конструкции кривые мощности ещё не рассчитаны полностью, но, согласно уже имеющимся данным, шесть лопастей диаметром в 0.93 метра и высотой в 1.1 метра в паре с высокоэффективным генератором переменного тока должны производить не менее 135 Вт электроэнергии при скорости ветра в 30 км/ч или 1.05 кВт при 60 км/ч.

Инструменты

Для того, чтобы собрать ветровую турбину собственноручно понадобятся следующие инструменты:

  • Электрическая дрель;
  • Металлические сверла (диаметром 4/6/10 мм);
  • Канцелярский нож или нож Stanley, ножницы по металлу (первый лучше для резки бумаги, последний для алюминиевых листов, поэтому лучше будет иметь оба);
  • Алюминиевый уголок (20х20 мм, около метра в длину, ± 30 см);
  • Рулетка;
  • Ручной заклепочник;
  • Маркер;
  • Скотч;
  • 4 прищепки;
  • Компьютер и принтер (подойдет недорогой черно-белый);
  • Гайковёрт с насадкой 7 мм (необязательно).

Материалы

Помимо инструментов, естественно, понадобятся и следующие материалы:

  • 11 алюминиевых пластин для офсетной печати;
  • 150 заклёпок (4 мм в диаметре, 6-8 мм в длину);
  • 18 болтов M4 (10-12 мм в длину) и столько же гаек;
  • 24 маленьких шайбы 4 мм (около 10 мм внешнего диаметра);
  • 27 больших шайб 4 мм (около 20 мм внешнего диаметра);
  • 27-дюймовое велосипедное колесо*;
  • 12 велосипедных спиц (любой длины);
  • 2 стальных полосы (примерно 20х3х3 см);
  • Ось заднего колеса велосипеда с тремя гайками (подходящая под колесо);
  • 3 болта M6 с гайками (длинной 60 мм);

*Так как велосипедные колёса имеют сложную классификацию размеров, вам пододет то, диаметр внешнего обода которого составляет 63-64 см. Конечно, можно использовать и 26-дюймовое колесо, но оно не так идеально. Оно должно иметь нормальную толстую ось (около 9 мм), выступающую минимум на 4 см, 36 спиц и плавно крутиться. Если вы собираетесь работать с низким числом оборотов (например, для откачки воды, а не производства электричества), то может понадобится заднее колесо с шестернями, но подробнее об этом позже. Не лишним будет смазать подшипники.

Материалы, перечисленные в этом примере, рассчитаны на сборку турбины с тремя лопастями. Если захотите собрать вариант на шесть лопастей – удвойте всё, кроме велосипедного колеса.

Файлы шаблонов

Руководство

Пошаговая инструкция по сборке ветрогенератора с вертикальной осью:

Шаг 1:

Загрузите и распечатайте два файла шаблонов по ссылкам, приведённым выше. Убедитесь, что они распечатаны в 100% размере (200 dpi). При печати измерьте расстояние между размерными стрелками, оно должно составлять 10 см на обеих страницах. Если есть погрешность в пару мм, то это не страшно.

Скрепите страницы вместе таким образом, чтобы 10-сантиметровые стрелки прилегали друг к другу как можно ближе. Лучше всего делать это напротив источника света, чтобы вы видели оба листа насквозь. При помощи канцелярского ножа и алюминиевого уголка, выступающего в роли линейки, вырежьте шаблон по наружным границам. При вырезании убедитесь, что ваша вторая рука не стоит на пути ножа, дабы не порезаться. В этом плане уголок отлично защищает руку.

Шаг 2:

Возьмите алюминиевую пластину и отмерьте прямоугольник 42х48 см. Проведите линию по средине, чтобы у вас получилось два прямоугольника 42х24 см. Прорежьте внешние линии ножом Stanley, не пытаясь прорезать металл полностью, достаточно будет просто прочертить линии, которые затем позволят отделить детали. Для лучшего эффекта можно будет пройтись один раз легко, а второй раз немного сильнее, с нажимом. При этом не нужно прорезать линию, проведённую посредине, на отметке в 24 см.

Согните пластину по линии надреза и разогните обратно. Проделайте это пару раз, и она расколется. Сделайте то же самое с другой стороны и удалите внешний металл. Отложите его на потом.

Шаг 3:

Прикрепите шаблон к металлическому прямоугольнику (далее «основание»), чтобы длинный край бумаги находился на средней линии, а правые края поравнялись с другими гранями. Не беспокойтесь, если другие края не ложатся идеально.

С помощью ножа и уголка прорежьте кривую линию шаблона, включая треугольники на каждом конце. Не обязательно, чтобы основание было безупречным, но постарайтесь сделать всё максимально точно, чтобы использовать его в качестве шаблона для остальных. Прорежьте, отогните и удалите два треугольника металла, оставшихся вне шаблона.

Шаг 4:

Отметьте центры отверстий на бумажном шаблоне маркером так, чтобы они были видны с другой стороны, и переверните бумагу так, чтобы печатная сторона была опущена на вторую половину основания, оставляя её длинный край на средней линии. Закрепите скотчем, чтобы она не сдвигалась.

Вогните внутрь изогнутую часть основания и удалите два маленьких треугольника. Будьте осторожны, не сгибайте металл слишком сильно, так как вы можете ослабить его в не прорезанной части.

Теперь у вас есть первое основание. Повторите шаги со второго по третий, чтобы их у вас стало шесть. Также, вместо бумаги для вырезания остальных оснований вы можете использовать первое. На трех из них центральная линия будет нарисована спереди, а на остальных трёх сзади.

Шаг 5:

Возьмите все шесть заготовок и соедините их вместе, выровняв максимально точно. Если вдруг у вас не оказалось прищепок используйте скотч для того, чтобы их соединить. Просверлите каждое из 16 отверстий сквозь все шесть заготовок 4-миллиметровым сверлом. Сначала просверлите центральное отверстие, так как оно единственное, которое должно быть точным. Можно просунуть болт в первое отверстие, чтобы основания не смещались при сверлении остальных. Если отверстия на вашем шаблоне немного отличаются, от тех что на видео, то это потому, что шаблон мог быть обновлён.

Уберите шаблон и разъедините их. Положите основание так, чтобы средняя линия слегка выступала за край стола, поместите на неё уголок и согните до 90 градусов. Повторите этот этап со всеми шестью основаниями, три из которых согните блестящей стороной вверх, а три – вниз. Отложите их в сторону.

Шаг 6:

Возьмите другую алюминиевую пластину и выровняйте любые возможные изгибы. Отмерьте 67 см от длинного края и отрежьте остальное. Проведите линию на расстоянии 2 см от одного из краев, переверните пластину и проведите еще одну линию на таком же расстоянии от противоположного края. Повторите действие с еще двумя пластинами и соедините все три вместе таким образом, чтобы каждая проведённая линия ровнялась с краем следующей пластины.

По краю прорежьте линии на расстоянии 4, 6, 8, 10, 18, 26 и 34 см, а после через каждые 2 см до 64 см. Имейте в виду, что левая сторона имеет надрез на расстоянии 4 см от края, а правая - 3 см. Переверните пластины, убедившись, что они аккуратно выровнены и проделайте то же самое. Убедитесь, что надрезы совпадают с обеих сторон.

Шаг 7:

Разместите пластины на столе одна над другой и выровняйте их по краям. Со стороны отметки в 4 см проведите вертикальную линию на расстоянии 19 см от края и ещё одну на 33 см. На каждой из этих линий сделайте отметки на расстоянии 3 и 20 см с обоих концов. Просверлите все три пластины 4-миллиметровыми свёрлами во всех восьми метках. Если вы делаете турбину с шестью лопастями, а не тремя, то можете легко просверлить все шесть пластин одновременно. После разъедините их.

Шаг 8:

Поместите пластину так, чтобы правый край с прорезью на расстоянии 3 см нависал над столом. Разместите уголок на второй отметке от этого края и загните его, придав треугольную форму, как показано на видео. Сделайте то же самое с левым краем.

Предварительно согните пластину, чтобы можно было легче разместить основания. Но не сгибайте её слишком сильно, чтобы она не сложилась пополам.

Шаг 9:

Переверните пластину вертикально и сверху вставьте основание (необрезанная половина с отверстиями должна указывать вверх). Лучший способ сделать это – сначала поместить треугольники по краям в соответствующие отверстия на нём, надавить на внутреннюю часть, а затем протолкнуть остальную часть пластины через разрез.

Далее разогните прорезанные расстояния краёв, чтобы первые три на каждом из треугольников были наружу, а остальные чередовались. Вероятно, вам нужно будет прорезать несколько из них или использовать плоскогубцы, если они окажутся менее податливыми. Если вы вдруг согнули вкладку в неправильную сторону, лучше оставьте как есть, так как выгибая ее назад вы можете ослабить металл. Убедитесь, что три длинные вкладки также загнуты поочерёдно.

Поднимите основание, чтобы оно выровнялось с загнутыми частями. Поместите две велосипедные спицы в его складку и загните вторую половину. Если вы придавите края металла вокруг спиц плоскогубцами, это предохранит их от выпадения. Переверните конструкцию и поместите другое основание таким же образом.

Шаг 10:

Отрежьте два внешних угла основания. Отмерьте меньший треугольник и отрежьте вместе со второй половиной, а у большего сделайте запас в 2 см при помощи алюминиевого уголка и также отрежьте. Повторите для второго основания.

Шаг 11:

Возьмите один из остатков пластины после вырезания основания и отрежьте от него полосу шириной 7 см, а затем отрежьте 4 см от её длины. Придайте ей треугольную форму, как показано в видео. С каждого края 3-сантиметровой лицевой стороны проведите линии, примерно по центру, длиной в несколько сантиметров.

Шаг 12:

Поместите треугольную стойку внутри флюгера так, чтобы сторона с помеченными линиями соответствовала ряду просверленных отверстий ближе к заднему краю. Посмотрите на линию через верхнее отверстие, чтобы проверить правильность расположения.

Просверлите стойку через отверстие во флюгере и скрепите с помощью заклепки. Повторите то же для нижнего отверстия, а затем для двух посередине.

Шаг 13:

Возьмите новую пластину, разгладив любые возможные неровности и разрежьте её пополам, чтобы у вас было две части шириной 33,5 см. Отрежьте 4 см от одного из коротких краев обеих частей. Проделайте это снова, чтобы у вас было четыре листа длиной 33,5 см (вам понадобятся только три из них). Выровняйте и соедините их вместе.

От одного из длинных краев нарисуйте три вертикальные линии на расстоянии 1, 9 и 19 см. Далее сделайте на каждой линии отметки, на расстоянии 1 и 20 см по обе стороны от короткого края. Просверлите 12 отверстий 4-миллиметровым сверлом.

Шаг 14:

Сделайте отметку на расстоянии 5 см от противоположного длинного края и придайте ему треугольную форму, как показано на видео.

Шаг 15:

Поместите получившийся лист внутрь лопасти так, чтобы ее ровный край совпадал с задней кромкой лопасти. Это нормально иметь небольшой промежуток, если она не идеально подходит.

Просверлите отверстия, расположенные ближе к краю, насквозь и скрепите лист вместе задней частью флюгера заклёпками.

Шаг 16:

Поднимите лопасть вертикально. Надавите треугольный край вставленного внутрь листа таким образом, чтобы он прилегал к задней части флюгера и был немного натянут над треугольной стойкой под ним.

Просверлите отверстия, к которым прилегает треугольный край листа, насквозь и закрепите его заклёпками.

Шаг 17:

Просверлите одно из центральных отверстий листа, убедившись, что сверло направленно прямо, и закрепите лист при помощи заклепки и шайбы так, чтобы шайба была на внутренней стороне лопасти. Этот будет намного проще с чьей-то помощью. Старайтесь держать шайбу ровно. Повторите для остальных трех отверстий.

Просверлите и закрепите тем же образом оставшийся ряд отверстий. При этом лист должен плотно облегать треугольную стойку. Вы наверняка заметите, что лопасть теперь стала намного прочнее и жестче.

Согните 2-сантиметровое перекрытие на обеих основаниях на 90 градусов.

Шаг 18:

Просверлите все отверстия на основании флюгера, вместе с теми, которые будут прикреплены к велосипедному колесу. Если вы делаете версию с тремя лопастями, то оно станет нижним. Если же вы делаете версию на шесть лопастей, то три из них будут прикрепляться к колесу нижней частью, а три остальные - верхней. В остальном лопасти идентичны.

Скрепите каждое отверстие заклёпками, кроме отмеченных, так как они будут прикреплены болтами к ободу колеса.

На некоторых отверстиях очень легко просто вытолкнуть внутренний слой металла как сверлом, так и клепальником, поэтому убедитесь, что все они правильно закреплены. Если это не так, вам может понадобиться высверлить и заменить заклепку.

Просверлите отверстия на противоположной стороне лопасти и скрепите все, кроме центрального.

Шаг 19:

Возьмите велосипедное колесо. Просверлите три отверстия диаметром 4 мм, равномерно распределенные вокруг обода. Ваше колесо должно иметь 36 спиц, поэтому делайте отверстия через каждые 12 спиц. Они также должны быть достаточно близко к краю обода.

Просуньте болт M4 через одно из получившихся отверстий и поставьте сверху лопасть, продев болт через крайнее из трёх отверстий в её основании. Поместите большую шайбу и закрутите гайку. Удостоверьтесь, что болт находится перед велосипедной спицей, которую вы положили в складку основания, а шайба над ней. Это важно для того, чтобы болт и вся лопасть не сорвались с колеса. Не затягивайте гайку до конца.

Выровняйте лопасть так, чтобы другие два отверстия располагались вблизи края обода колеса и сделайте через них отметки при помощи маркера. Отодвиньте лопасть, чтобы вы могли просверлить две метки.

Верните лопасть на место и зафиксируйте ещё двумя болтами, большими шайбами и гайками. Полностью затяните все три. Именно в этом моменте вам сможет пригодиться 7-миллиметровая насадка и гайковёрт, так как затягивание их вручную – более трудоёмкий процесс. Вам также лучше использовать болты с шестигранной головкой, поскольку они, должны упираться в обод колеса и не проворачиваться, когда вы их затягиваете. Если они всё же крутятся, просто ухватитесь за головку болта плоскогубцами или гаечным ключом на 7 мм. Попытка закрутить их отвёрткой, если вы вдруг используете болты крестообразным шлицом, в лучшем случае – это кошмар, а если вы делаете турбину с шестью лопастями, то это просто-напросто будет невозможно.

Шаг 20:

Повторите все предыдущие действия дважды, начиная с шага 8, чтобы собрать еще две лопасти из оставшихся форм и пластин и прикрепить их к колесу.

Шаг 21:

Возьмите еще один остаток пластины и отрежьте полосу шириной 9,5 см и длиной 67 см. Нарисуйте линии на расстоянии 3.5 см от левого длинного края и на расстоянии 1 см от правого. На этом расстоянии в 1 см согните полосу до 45 градусов. Затем переверните и задайте ей треугольную форму, как показано на видео.

Просверлите отверстия диаметром 4 мм на расстоянии 1 см от каждого конца получившейся стойки и посередине, всего их должно получится три, на плоской области в 1 см. Среднее отверстие скрепите заклёпкой. Повторите дважды, чтобы у вас получилось три стойки.

Шаг 22:

Проденьте болт M4 с большой шайбой снизу через центральное отверстие в верхней части одной из лопастей и через крайние отверстия в двух стойках. Добавьте ещё одну большую шайбу и закрутите гайку. Повторите то же самое с двумя другими лопастями и последней стойкой. Шайбы затягивайте не до конца.

Верхняя часть лопастей должна быть вровень с их основаниями. Для этого поместите турбину на землю, чтобы вы могли смотреть на нее сверху, и проверьте (при надобности подровняйте) каждую из лопастей.

После того, как выровняете положение лопасти, просверлите отверстие через одну из распорок (насквозь вместе с верхней частью лопасти) на расстоянии 1-2 см от края. Проденьте большой болт, большую шайбу и затяните гайкой. Повторно проверьте выравнивание, просверлите другую стойку и проделайте то же самое. Затяните все три гайки. Повторите это для двух других лопастей.

При желании вы можете добавить дополнительные три лопасти к нижней части колеса. Это даст вам в два раза больше энергии, а также сделает турбину более стабильной, перемещая точку опоры в середину, а не вниз.

Шаг 23:

Чтобы сделать скобу для крепления вашей турбины, возьмите две стальных полосы на 18 и 20 см в длину, 3 см в ширину, толщиной около 3 мм. Эти цифры не являются жизненно важными, если они примерно совпадают, а металл достаточно прочен.

Отметьте расстояние в 3 см с одного конца каждой полосы, и согните их под прямым углом при помощи верстачных тисков. Убедитесь, что углы близки к 90 градусам, или турбина не будет стоять прямо.

Вложите две части так, чтобы 18-сантиметровая находилась внутри большей. Просверлите отверстие диаметром 10 мм (которое должно соответствовать диаметру оси велосипедного колеса для вашей турбины) через загнутые стороны полос. Удостоверьтесь, что они не скользят во время сверления.

Возьмите запасную велосипедную ось, не ту, что на вашем колесе, и намотайте гайку. Вставьте её в 20-сантиметровую стальную полосу, добавьте и затяните еще одну гайку, добавьте меньшую полосу, а затем еще одну гайку.

Просверлите 6-миллиметровое отверстие в зазоре между двумя частями, как показано на видео, а затем еще одно, примерно через 1 см, и третье рядом с противоположным концом. Скрутите гайки, и снимите крепления.

Шаг 24:

Просуньте болт M6 через верхнее отверстие большей стальной полосы и наденьте её на ось в нижней части колеса (если гайка, которую вы используете, не слишком широкая, то, возможно, понадобится обработать головку болта, чтобы он поместился между двумя частями крепления), затем затягивайте гайку, после продеваете 18-сантиметровый кусок, последнюю гайку и затягиваете её максимально плотно, и, наконец, продеваете два болта через оставшиеся отверстия.

Поздравляем, вы сделали ветряк своими руками!

Конфигурации

Возможные конфигурации ветровой турбины:

Ниже представлены некоторые потенциальные конфигурации вашего ветрогенератора, которые предполагают прикрепление различных дополнительных деталей, чтобы они могли выполнять полезную работу. Конечно же, какое-то одно решение не сможет подойти для всех ситуаций сразу, поскольку это будет зависеть в значительной степени от того, как вы планируете использовать ветровую турбину, поэтому возможные варианты предоставлены по большей части для ознакомления. Большинство сборок довольно просты и уже делались раньше.

Вариант A: Генератор постоянного тока.

Эта ветровая установка может быть подключена и использована для подачи питания различному оборудованию, вроде механического насоса для воды, но вы, вероятно, будете использовать её для выработки электроэнергии с целью питания бытовых устройств или зарядки батарей.

Одним из самых простых решений для этого является использование двигателя постоянного тока на постоянных магнитах, который в режиме реверса будет работать генератором и преобразовывывать механическую энергию в электрическую. Какой тип двигателя вы будете использовать в конечном итоге, зависит от вашего бюджета, силы ветров и потребностей в электричестве. Однако способы подключения их к турбине практически одинаковые. Хорошими вариантами для увеличения выходной мощности могут стать двигатели от автомобильных стеклоочистителей, электроскутоеров, или беговых дорожек. Они могут быть как куплены в интернете, так и найдены в старых или выброшенных устройствах.

Процесс прикрепления двигателя к конструкции ветряка в основном заключается только в том, чтобы снять с него всё лишнее, присоединить шкив к валу, пропустив зубчатый ремень вокруг обода колеса (со слоем нейлоновой обвязки, прикреплённой чтобы защитить ремень и обеспечить надежное зацепление) и закрепив двигатель на раме, как показано на видео, при помощи длинных болтов, чтобы вы могли легко отрегулировать натяжение ремня.

Вариант B: Высотный столб

Есть много различных способов установки ветряного генератора, включая крышу вашего дома, лодку, фургон или радиомачту, но самый распространённый вариант, особенно если вы проживаете в сельской местности, - это металлический столб с направляющими тросами.

В значительной степени это вопрос о присоединении различных компонентов, как показано на видео, для более безопасного и надёжного размещения турбины. Вам возможно понадобится выкопать ямы, от полуметра до метра глубиной, для размещения там деревянных якорей, или же прикрепить тросы к любым другим прочно зафиксированным предметам, находящимся поблизости.

Внизу столба при этой конфигурации имеется горизонтальный рычаг и соединение, позволяющее опускать конструкцию на землю для диагностики или во время шторма. Для этого необходимо лишь снять D-образную скобу в местах крепления тросов и с его помощью, осторожно опустить установку на землю. Поднять её снова можно повторив весь процесс наоборот. После этого желательно убедиться, что всё надёжно закреплено, а столб находится в вертикальном положении.

Для того, чтобы сделать процесс более безопасным, можно использовать четыре троса вместо трёх.

Вариант C: Велосипедная цепь и генератор(ы) постоянного тока

Зубчатый ремень и шкив, в случае с первым вариантом работают достаточно хорошо, но не везде они могут выступать в качестве легкодоступных материалов. Более простой и потенциально более эффективной альтернативой этого способа является использование велосипедной цепи, длиной около 2.1-2.2 метра (для этого вам понадобится объединить две цепи вместе), и один или три двигателя постоянного тока. Два из них будут способствовать натяжению цепи, в то время, когда вы будете соединять три двигателя вместе при помощи хомутов, оставляя между ними небольшие промежутки, чтобы они не соприкасались. Для этого можно проложить между ними что-нибудь эластичное, вроде толстой резины. Если вы используете только один генератор, то конфигурация практически такая же, за исключением небольших металлических трубок с велосипедными шестернями, вращающимися на болте или другой оси, для того же натяжения.

Если вы используете три двигателя, то для большей эффективности, особенно при слабом ветре, они могут быть соединены последовательно. Дополнительным преимуществом этой конфигурации является прочное сцепление с основанием турбины, делая ее более устойчивой и надёжной при сильных ветрах.

Вариант D: Мотор-колесо электровелосипеда.

Идеальное решение для получения электроэнергии из самодельной турбины - использовать мотор-колесо электрического велосипеда. Если вам удастся его найти. Конструкция использует колесо в любом случае, и почти каждый аспект входной и выходной мощности, оборотов в минуту и прочего, отличного подходит для мотор-колеса мощностью 300 Вт. Все, что нужно сделать, это построить на нем турбину и подключить провода к электрической системе. Правда в некоторых странах, к сожалению, подобное решение может стать сложным и дорогостоящим.

Вариант E: Самодельный генератор переменного тока.

Этот вариант сможет предоставить вам наибольший контроль над производительностью домашнего ветряка с точки зрения напряжения, оборотов и общей мощности на сегодняшний день. Однако он и один из самых трудоёмких, требующих широких познаний. По сути, это всего лишь круг магнитов, проходящих через круг катушек из медной проволоки, но их точная конфигурация зависит от множества факторов. И всё же эту проблему решали уже тысячу раз и на этот счёт есть куча полезной информации в интернете.

Вариант F: «Хардкор».

Стандартная сборка турбины с шестью лопастями выдерживала ветра со скоростью до 105 км/ч и несколько довольно серьезных штормов, но, если вы хотите добавить конструкции ещё больше надёжности, то этот вариант предоставит такую возможность. В целом, он заключается в наличие дополнительных распорок и точек опоры с другой стороны оси колеса и двух дополнительных треугольников из алюминия на верхней и нижней стойках, чтобы предотвратить возможность отклонения лопастей слишком далеко от вертикали и, следовательно, их срыва с колеса. Другое отличие состоит в том, что лучше закрепить распорки внутри, а не снаружи, чтобы они находились на центральной линии турбины и аккуратно располагались в вырезанных кругах двух треугольников.

Вариант G: Daisy-chain (вертикальный столб для нескольких ветряных турбин).

Около половины общей стоимости стандартной установки турбины приходится на сам столб и его модификации. Но нет никаких причин, по которым вы можете иметь только одну турбину на нём. Те, что располагаются ниже будут получать меньше ветра и, таким образом, производить меньше энергии, чем верхние, но эта затея всё равно весьма стоящая. Так как одни турбины могут отвечать за производство электрической энергии, а другие, например, за перекачку воды.

Видео

Вывод

Такой самодельный ветряк едва ли обеспечит электричеством весь дом, но нескольких установок будет вполне достаточно, чтобы снабжать энергией дачный домик, уличное освещение, поливальные установки и т.п. По словам разработчиков, вдвоем такую штуку можно изготовить за четыре часа не самого напряженного труда, потратив при этом всего пятнадцать-тридцать долларов.

Альтернативная энергия на сегодняшний день развивается очень быстрыми темпами. Например, вертикально-осевой ветрогенератор уже не является новинкой. В скором будущем возобновляемые источники могут существенно заменить стандартные станции. Они обладают большим количеством преимуществ. Например, вертикальный ветрогенератор своими руками сделать несложно, он стоит не очень дорого. Тем более что для его производства вы можете использовать подручные материалы. Что касается установки такого агрегата, то тут уже следует подумать, где ее выполнить. Возможно, в вашем случае монтаж конструкции будет нецелесообразен.

Что представляет собой изделие?

Представленная конструкция - это специальный генератор для выработки электрической энергии при помощи перемещения воздушных потоков (ветра). По внешнему виду устройство напоминает обычную мельницу с лопастями и высокой мачтой, в основании которой находится сам генератор. Естественно, такой аппарат должен быть не только правильно сконструирован, но и верно оборудован.

Движение «крыльев» обеспечивается ветром, поэтому источник энергии возобновляемый. Чем выше мачта, тем выработка электроэнергии будет стабильнее и выше. Естественно, для изготовления такого устройства потребуются определенные материалы и приборы для конвертации переменного тока в постоянный. Как же вы можете сделать вертикальный ветрогенератор своими руками, вы узнаете позже. Главное – запастись терпением и желанием поработать.

Сферы применения конструкции

В основном такой агрегат устанавливается во время строительства электростанций. Однако иногда экономные хозяева применяют его в домашних условиях. Использовать данный аппарат можно и в городе, и в деревне. Для того чтобы соорудить целую электростанцию, потребуется достаточно большая площадь и множество ветряков.

Выработанная таким способом энергия может поступать для удовлетворения нужд частных потребителей или же промышленности. Естественно, в последнем случае нужно обдумать экономическую обоснованность применения такого источника электричества.

Преимущества аппарата

Перед тем как сделать вертикальный ветрогенератор своими руками, необходимо обязательно выяснить его достоинства. Среди них присутствуют такие:

Небольшие эксплуатационные расходы, простота монтажа и обслуживания. Все это вы можете делать собственноручно. Для этого вам не потребуется много времени или средств.

Вы можете сконструировать вертикальный ветрогенератор своими руками.

Быстрый монтаж. Главное, чтобы аппарат был зафиксирован прочно, чтобы сила ветра не сломала его.

Безопасность для внешней среды, так как выработка такой энергии не сопровождается вредными выбросами и не требует захоронения отработанных материалов. Кроме того, источник является возобновляемым, поэтому вам не следует бояться того, что ресурсы закончатся.

Возможность применения достаточно больших площадей, занятых под подобную электростанцию, для выращивания сельскохозяйственной продукции.

Экономия средств. Во-первых, стоимость такой электроэнергии не зависит от курса доллара или рыночных цен на стандартное топливо. Во-вторых, вам не нужно добывать и перерабатывать исходное сырье. В-третьих, конструкция устанавливается вблизи потребителя, поэтому отсутствуют дополнительные затраты на транспортировку электричества. Кроме того, ветер не нужно покупать у других стран, которые могут взвинтить цену.

Недостатки устройства

Перед тем как сделать ветрогенератор, нужно также рассмотреть все те минусы, которые сопровождают его использование:

Немалая стоимость конструкции, которая производилась промышленно. Этот недостаток легко устраним, так как вы можете соорудить мачту и лопасти из подручных средств. Естественно, качество результата в обоих случаях может быть разным. Поэтому стоит определиться, сможете ли вы сконструировать агрегат самостоятельно.

Низкая распространенность изделий, что порождает немало домыслов касательно их работы и эффективности.

Конструкция издает достаточно высокий уровень шума, а также может влиять на качество передачи телевизионных или радиосигналов. Многое зависит и от того, на какой удаленности от дома ветряк находится.

Ветер - это нестабильный источник энергии, так как погода может быть тихой. В этом случае генератор будет просто бесполезен.

Единственным негативным влиянием для окружающей среды является то, что в лопасти могут попадать и гибнуть птицы.

В некоторых случаях при установке ветряка страдает эстетический вид ландшафта, хотя для минималистов это не проблема.

Для установки электростанции потребуется немалая территория.

Классификация агрегатов

Перед тем как сделать ветрогенератор, следует разобраться в том, каким он бывает. Можно выделить следующие типы конструкций:

1. С цилиндрическими лопастями. Такой агрегат обладает высоким крутящим моментом, хотя и достаточно большой по размеру. Недостатком устройства считается не слишком хорошая продуктивность. Кроме того, такой аппарат достаточно тяжел.

2. Вертикально-осевые. Они обладают большим количеством лопастей, которые располагаются вертикально к поверхности земли, при этом они параллельны к мачте. Такие аппараты производительны и эффективны, однако стоят они достаточно дорого.

3. Геликоидный роторный ветрогенератор. Его особенностью является форма лопастей: они изогнутые по диагонали. Благодаря этому они вращаются равномерно. Минусом такой установки является высокая ее стоимость, а также сильный шум. Соорудить лопасти вертикального ветрогенератора такого вида самостоятельно очень трудно, так как для этого требуется специальное оборудование.

4. Многолопастные. Они достаточно эффективны в выработке энергии, однако стоят дорого. Они обладают двумя рядами лопастей и внушительными размерами.

Ветрогенератор, фото которого вы можете видеть в статье, является достаточно хорошим производителем энергии, если правильно подобрать его конструкцию.

Можно ли сделать аппарат самостоятельно?

Естественно, множество мастеров интересуются тем, можно ли соорудить такую конструкцию собственными руками. Конечно, можно. Для начала следует определиться с типом изделия, а также с инструментами, которые вы будете использовать, и соответствующими материалами.

Следует учесть, что самодельный вертикальный ветрогенератор вы можете собрать из того, что у вас есть под руками. Например, старого газового баллона или металлической бочки. А еще у вас есть возможность применить старые стальные листы или даже ткань. Все зависит от того, какой именно аппарат вы хотите соорудить.

Какие материалы нужны для работы?

Итак, перед тем как сделать ветряк своими руками, рассмотрим вопрос о том, из чего вы будете его сооружать. Вам понадобятся такие материалы:

1. Листы фанеры (ее толщина зависит от высоты конструкции, а также от количества лопастей и может составлять 0,5-1 см). Именно из этого материала чаще всего выполняется та часть установки, которая будет вертеться.

2. Тонкая листовая сталь, дюралюминий, гибкий пластик (можно также применить стеклопластик и ткань, но последний вариант будет наименее надежным).

3. Прочный металлический стержень, диаметр которого должен быть не менее 10 мм. Высота его при этом составляет около 60-70 см. Этот стержень буде основание вертушки.

4. Крепежные элементы (гайки, болты, заклепки).

5. Деревянные бруски или металлические уголки для фиксации конструкции в вертикальном положении.

В принципе, это основной перечень материалов, необходимых для работы. В процессе выполнения действия могут понадобиться некоторые другие заготовки.

Необходимые инструменты

Прежде чем сделать ветряк своими руками, следует собрать то, чем вы будете работать. Вам обязательно понадобятся такие инструменты:

Электродрель и сверла к ней.

Ножницы по металлу.

Электрический лобзик с полотнами для дерева и стали.

Гаечные ключи или заклепыватель.

Лопата и другие инструменты для земляных работ (если конструкция будет фиксироваться на грунте).

Линейка, карандаш, циркуль.

Кроме этого нужна схема ветрогенератора, однако ее найти уже не трудно. Можно даже сделать самому, однако для этого понадобится производить некоторые расчеты.

Особенности изготовления лопастей

Когда схема ветрогенератора уже готова, можно приступать к его изготовлению. Для начала приступим к производству вращающейся части. Лопасти вертикального ветрогенератора изготавливаются из фанеры. Перед их вырезанием постарайтесь начертить картонный шаблон. Для этого используйте карандаш, линейку и циркуль. Длина лопасти для ветрогенератора составляет 19 см, а ширина у края - 9 см. Вырезать нужно будет 6 деталей, которые потом будут соединяться попарно. Форма лопастей каплеобразная.

Для вырезания заготовкой используйте лобзик. Срез должен быть аккуратным и ровным. Для соединения деталей и образования крыльев понадобятся деревянные планки, длиной 53 см.

Лопасти вертикального генератора должны находиться под углом. Обычно он составляет 9 градусов к центру вертушки. Естественно, этот показатель можно отрегулировать уже после того, как конструкция будет полностью сделана. Далее лопасти следует собрать и прикрепить к соединительным планкам. В этом случае в качестве крепежей применяются саморезы. Просверливать дырку нужно сквозь детали и планку одновременно. При надобности можно использовать клей. Кроме того, планки не должны выходить за кромки деталей. Старайтесь их максимально выровнять. От этого будет зависеть качество конструкции.

Далее лопасти для ветрогенератора и все деревянные части следует обернуть металлом. Это нужно для того, чтобы древесина не портилась под воздействием внешних условий (дождя, снега). для закрепления металла можно использовать заклепки или болты.

Теперь можно складывать вертикально-осевой генератор.

Особенности изготовления и сборки всей конструкции

Приступим к закреплению крыльев на центральную ось (стальной стержень). Для этого используются круги, вырезанные из фанеры. Для того чтобы их правильно начертить, применяйте транспортир. Диаметр этих кругов составляет 20 см при толщине диска 1 см. В их центре необходимо сделать отверстие, в которое можно будет продеть стержень.

Далее готовые крылья следует прикрепить к оси. Для этого с обеих сторон стержня необходимо накрутить 2 гайки на расстоянии 6 см от краев. Далее на него надеваются круги и тоже прикручиваются гайкой. Диски должны быть зафиксированы достаточно плотно. Что касается крыльев, то они должны быть затянуты не очень свободно, но обязаны иметь возможность вращаться. Естественно, на этом этапе сборки нужно выставить правильный угол поворота лопастей.

В принципе, самодельный вертикальный ветрогенератор уже практически готов. Нужно только еще сделать раму-стойку, на которой он будет крепиться и свободно вращаться. Для ее изготовления можно взять металлические уголки необходимой высоты. Естественно, вы можете применить и деревянные брусья. Учтите, что сила ветра может быть большой, поэтому нужно постараться обеспечить максимальную устойчивость рамы. Перед подключением всех остальных приборов ветряк нужно проверить и внести необходимые поправки.

Учтите, что шаг ротора может быть динамическим или статическим. В первом случае диапазон рабочих скоростей более высокий. Однако его придется оснащать лопастями особой формы. Это достаточно дорого и технологически сложно. При статическом шаге ротора вы имеете только одну определенную скорость. Быстрее ветряк крутиться уже не может. Хотя в этом случае надежность аппарата более высокая, а частота поломок уменьшается.

Кроме того, при вращении ветряка необходимо обеспечить балансировку конструкции. Таким способом вы сможете сохранить ее целостность. Кроме того, ветер может быть очень сильным, и обороты придется снижать. Для этого применяется специальный центробежный регулятор. Он замедляет ход лопастей, если он превышает позволенную норму. Если же ветер слабый, то эффективность агрегата можно повысить при помощи цепного механизма.

Вертикальный ветрогенератор, цена которого составляет около 200-300 долларов и выше, можно сделать самостоятельно. Для выработки электричества к ветряку можно подсоединить обычное автомобильное устройство. Небольшого генератора вам вполне достаточно, чтобы обеспечить свет в доме, подключить зарядные устройства, запитать ноутбук или другие небольшие приборы. Кроме того, вам понадобится еще и преобразователь, который будет превращать постоянный ток в переменный. А еще необходим стабилизатор напряжения, который будет делать работу мини-станции безопасной.

Вот и все особенности строительства самодельной установки по выработке электричества за счет движения ветра. Удачи!

Как сделать вертикальный ветрогенератор

Ветрогенераторы подразделяются по типу размещения вращающейся оси (ротора) на вертикальные и горизонтальные. Конструкцию ветрогенератора с горизонтальным ротором мы рассматривали в прошлой статье, теперь поговорим о ветрогенераторе с вертикальным ротором.

Прежде всего, рассмотрим преимущества и недостатки вертикального ветряка.

Низкий уровень шума – ветровое, колесо практически не издаёт шум и не мешает, нет характерного свиста винта.

Простота конструкции – сделать такой ветрогенератор и установить не составит особой сложности.

Надёжная конструкция – все узлы компактны, удобны в обслуживании.

Основным недостатком конструкции ветрогенератора с вертикальным ротором являются его низкие обороты, такой ветряк нужно устанавливать в местности с преобладающей скоростью ветра более 4 м/с.

Практически нет защиты от ураганного ветра – если в горизонтальном ветряке при урагане автоматически срабатывает складывающийся хвостовик который поворачивает ветроколесо, то в такой конструкции нужно вручную заклинивать ротор, как вариант замыкать контакты на выходе из катушек.

Как сделать вертикальный ветрогенератор.

Прежде всего, ели вы решили изготовить ветряк с вертикальной осью нужно определиться с генератором.

Поскольку вертикальный ветрогенератор низкооборотный, то соответственно понадобится генератор способный выдавать зарядку на аккумулятор при достаточно низких оборотах.

Автомобильный генератор для этой конструкции не совсем подходит, так как он выдаёт зарядный ток при оборотах более 1000 об/мин. Для автомобильного генератора нужно использовать шкив с передаточным числом 4 – 5 и доработать сам генератор.

В качестве генератора практичней использовать аксиальный генератор, его можно изготовить самостоятельно, процесс изготовления описан в этой статье.

Схема аксиального генератора для ветрогенератора.

Изготовление ветроколеса для вертикального ветряка.

Ветроколесо (турбина) состоит из двух опор верхней и нижней, а также из лопастей.

Ветроколесо изготовляется из листов алюминия или нержавейки, также ветроколесо можно вырезать из тонкостенной бочки. Высота ветроколеса должна быть не менее 1 метра.

В этом ветроколесе угол изгиба лопастей задаёт скорость вращения ротора, чем больше изгиб, тем больше скорость вращения.

Ветроколесо крепится болтами сразу к шкиву генератора.

Схема подключения ветогенератора.

Генератор подключается к контроллеру, тот в свою очередь к аккумулятору. В качестве накопителя энергии практичней использовать автомобильный аккумулятор. Поскольку бытовые приборы работают от переменного тока, нам понадобится инвертор для преобразования постоянного тока 12 V в переменный 220V.

Вертикальный ветряк своими руками (5 кВт)

Деятельность как отдельных людей, так и всего нынешнего человечества практически невозможна без электроэнергии. К сожалению, быстро увеличивающийся объем потребления нефти и газа, угля и торфа ведет к уменьшению запасов этих ресурсов на планете. Что же возможно сделать, пока все это еще есть у землян? Согласно выводам специалистов, именно развитием энергетических комплексов можно решить проблемы мировых экономических и финансовых кризисов. Поэтому наиболее актуальными становятся поиск и использование бестопливных источников энергии.

Возобновляемая, экологическая, «зеленая9raquo;

Возможно, не стоит напоминать, что все новое – это хорошо забытое старое. Силу течения реки и скорость ветра люди научились применять для получения механической энергии очень давно. Солнце нагревает нам воду и двигает автомобили, питает космические корабли. Колеса, установленные в руслах ручьев и небольших рек, подавали воду на поля еще в Средние века. Одна ветряная мельница могла обеспечить мукой несколько окрестных деревень.

В настоящий момент нас интересует простой вопрос: как обеспечить свое жилище дешевым светом и теплом, как сделать ветряк своими руками? 5 кВт-ной мощности или чуть менее, главное, чтобы можно было снабдить свое жилище током для работы электроприборов.

Интересно, что в мире существует классификация зданий по уровню ресурсоэффективности:

  • обычные, построенные до 1980-1995 гг.;
  • с низким и ультранизким уровнем энергопотребления – до 45-90 кВч на 1 кВ/м;
  • пассивные и энергонезависимые, получающие ток из возобновляющихся источников (например, установив ветрогенератор роторный (5 кВт) своими руками или систему солнечных панелей, можно решить эту задачу);
  • энергоактивные здания, вырабатывающие электричества больше, чем им требуется, получают деньги, отдавая ее через сеть другим потребителям.

Получается, что собственные, домашние мини-станции, установленные на крышах и во дворах, могут со временем составить своеобразную конкуренцию крупным поставщикам тока. Да и правительства разных стран всячески поощряют создание и активное использование альтернативных источников энергии.

Как определить рентабельность собственной электростанции

Исследователи доказали, что резервные возможности ветров намного больше всех накопившихся многовековых топливных запасов. Среди способов получения энергии из возобновляемых источников ветрякам отведено особое место, так как их изготовление проще, чем создание солнцеулавливающих панелей. По сути, ветрогенератор на 5 кВт своими руками можно собрать, имея нужные составляющие, среди которых магниты, медная проволока, фанера и металл для лопастей.

Знатоки утверждают, что производительной и, соответственно, выгодной может стать конструкция не только правильной формы, но и построенная в правильном месте. Это значит, что необходимо учитывать наличие, постоянство и даже скорость воздушных потоков в каждом отдельном случае и даже в конкретном регионе. Если в местности периодически наступают штили, спокойные и безветренные дни, устройство мачты с генератором не принесет никакой пользы.

Прежде чем начинать делать ветряк своими руками (5 кВт), необходимо продумать его модель и вид. Не стоит ожидать от слабой конструкции большого выхода энергии. И наоборот, когда нужно запитать только пару лампочек на даче, нет смысла строить огромный ветряк своими руками. 5 кВт – мощность, достаточная для обеспечения электроэнергией практически всей системы освещения и домашних приборов. Будет постоянный ветер – будет и свет.

Как сделать ветрогенератор своими руками: последовательность действий

На выбранном для высокой мачты месте укрепляют сам ветряк с присоединенным к нему генератором. Вырабатываемая энергия по проводам поступает к нужному помещению. Считается, что чем выше конструкция мачты, больше диаметр ветряного колеса и сильнее воздушный поток, тем выше КПД всего устройства. На деле все не совсем так:

  • например, сильный ураган может запросто поломать лопасти;
  • некоторые модели можно установить на крыше обычного дома;
  • правильно выбранная турбина легко запускается и отлично работает даже при ветре с очень слабой скоростью.

Основные виды ветряков

Классическими считаются конструкции с горизонтальным размещением оси вращения ротора. Обычно они имеют 2-3 лопасти и устанавливаются на большой высоте от земли. Наибольшая эффективность такой установки проявляется при воздушном потоке постоянного направления и его скорости в 10 м/с. Существенным недостатком этой лопастной конструкции является сбой вращения лопастей при часто меняющемся, порывистом направлении ветра. Это приводит либо к непродуктивной работе, либо к разрушению всей установки. Чтобы запустить такой генератор после остановки, необходима принудительная начальная раскрутка лопастей. Кроме того, при активном вращении лопасти издают специфические, неприятные человеческому уху звуки.

Вертикальный ветрогенератор («Волчок9raquo; 5 кВт или другой) имеет иное размещение ротора. Н-образными или бочкообразными турбинами захватывается ветер любого направления. Эти конструкции имеют меньшие размеры, запускаются даже при самых слабых воздушных потоках (при 1,5-3 м/с), не требуют высоких мачт, их можно использовать даже в городских условиях. Кроме того, номинальной мощности ветряки, своими руками (5 кВт - это реально) собранные, достигают при ветре в 3-4 м/с.

Паруса не на кораблях, а на суше

Одним из популярных направлений в ветроэнергетике сейчас стало создание горизонтального генератора с мягкими лопастями. Основным отличием является как материал изготовления, так и сама форма: созданные ветряки своими руками (5 кВт, парусный тип) имеют 4-6 треугольных тканевых лопастей. Притом, в отличие от традиционных конструкций, их сечение увеличивается в направлении от центра к периферии. Эта особенность позволяет не только «поймать9raquo; слабый ветер, но и избежать потерь при ураганном воздушном потоке.

Плюсами парусников можно назвать следующие показатели:

  • большая мощность при медленном вращении;
  • самостоятельная ориентировка и подстройка под любой ветер;
  • высокая флюгерность и малая инерция;
  • отсутствие необходимости принудительного раскручивания колеса;
  • совершенно беззвучное вращение даже при больших оборотах;
  • отсутствие вибраций и звуковых возмущений;
  • относительная дешевизна конструкции.

Ветряки своими руками

5 кВт необходимой электроэнергии можно получить несколькими способами:

  • построить простейшую роторную конструкцию;
  • собрать комплекс из нескольких последовательно расположенных на одной оси парусных колес;
  • использовать аксильную конструкцию с неодимовыми магнитами.

Важно помнить, что мощность ветряного колеса пропорциональна произведению кубического значения скорости ветра на ометаемую площадь турбины. Итак, как сделать ветрогенератор на 5 кВт? Инструкция далее.

За основу можно взять автомобильную ступицу и тормозные диски. 32 магнита (25 на 8 мм) располагают параллельно по кругу на будущих дисках ротора (подвижной части генератора) на каждый диск по 16 штук, притом плюсы обязательно чередуют с минусами. У противолежащих магнитов должны быть разные значения полюсов. После разметки и размещения все находящееся на круге заливают эпоксидкой.

Катушки медной проволоки располагают на статоре. Их количество должно быть меньше, чем число магнитов, то есть 12. Предварительно все провода выводят и соединяют между собой звездой или треугольником, затем тоже заливают эпоксидным клеем. Рекомендуется перед заливкой вставить внутрь катушек кусочки пластилина. После затвердения смолы и их извлечения останутся отверстия, которые нужны для вентиляции и остывания статора.


Как все это работает

Диски ротора, вращаясь относительно статора, образуют магнитное поле, и в катушках возникает электроток. А ветряк, присоединенный посредством системы шкивов, и нужен для того, чтобы двигать эти части рабочей конструкции. Как сделать ветрогенератор своими руками? Некоторые начинают изготовление собственной электростанции со сборки генератора. Другие – с создания лопастной вращающейся части.

Вал от ветряка сцепляют скользящим соединением с одним из дисков ротора. На сильный подшипник ставится нижний, второй диск с магнитами. Статор располагают посередине. Все части крепятся к фанерному кругу с помощью длинных болтов и фиксируются гайками. Между всеми «блинами9raquo; обязательно оставляют минимальные зазоры для свободного вращения дисков ротора. В итоге получается 3-фазный генератор.

«Бочка9raquo;

Осталось изготовить ветряки. Своими руками 5 кВт-ную вращающуюся конструкцию можно сделать из 3 кругов фанеры и листа самого тонкого и легкого дюраля. Металлические прямоугольные крылья крепятся к фанере болтиками и уголками. Предварительно в каждой плоскости круга выдалбливаются направляющие канавки в форме волны, в которые вставляются листы. Получившийся двухэтажный ротор имеет 4 волнистых лопасти, прикрепленные друг к другу под прямым углом. То есть между каждыми двумя скрепленными ступицами фанерными блинами расположены по 2 изогнутых в форме волны дюралевых лопасти.

Данная конструкция насажена по центру на стальную шпильку, которая и будет передавать крутящий момент генератору. Ветряки, своими руками (5 кВт) созданные, такой конструкции весят примерно 16-18 кг при высоте 160-170 см и диаметре основы 80-90 см.

Что нужно учесть

Ветряк-«бочку9raquo; можно установить даже на крыше здания, хотя вполне достаточно вышки высотой 3-4 метра. Однако обязательно нужно защитить от природных осадков корпус генератора. Рекомендуется также установить аккумуляторный накопитель энергии.

Для получения из постоянного 3-фазного тока переменного обязательно в схему нужно включить и преобразователь.

Как сделать вертикальный ветрогенератор своими руками

В последнее время поклонники возобновляемых источников энергии отдают предпочтение вертикальным конструкциям ветряков. Горизонтальные уходят в историю. Дело не только в том, что смастерить вертикальный ветрогенератор своими руками легче, чем горизонтальный. Основным мотивом такого выбора является эффективность и надежность.

Преимущества вертикального ветряка

1. Вертикальная конструкция ветряка лучше ловит ветер: нет необходимости определять, откуда он дует и ориентировать лопасти под воздушный поток. 2. Установка такого оборудования не требует высокого его расположения, а это значит, что вертикальный ветряк своими руками будет легче обслужить. 3. Конструкция содержит меньше движущихся деталей, что повышает ее надежность. 4. Оптимальный профиль лопастей повышает КПД ветряка. 5. Многополюсный генератор, использующийся для выработки электроэнергии, является менее шумным.

Расскажем о том, как изготовить детали и собрать вертикальный ветрогенератор своими руками.

Алгоритм действий при изготовлении турбины своими руками

1. Опоры (верхняя и нижняя) лопастей представляют собой две концентрические окружности одинаковых по размеру. Изготавливают их из ABS пластика – вырезают лобзиком. В одной из них (она будет верхней) проделывают отверстие диаметром 300 мм.

2. Нижняя опора должна опираться на хаб, в качестве которой можно использовать ступицу легкового автомобиля. Для соединения деталей нужно разметить и высверлить 4 отверстия. 3. Собирая вертикальный ветрогенератор своими руками, особое внимание уделяют креплению лопастей. Для правильного расположения лопастей нужен шаблон. На нижней опоре чертим шестиконечную звезду (звезду Давида), углы которой будут находиться на краю окружности. Проецируем чертеж на верхнюю опору. Лопасти изготавливаем из тонкого листового металла в виде полоски длиной 1160 мм, ширина которых – чуть больше стороны луча звезды.

4. Крепят лопасти двумя уголками вверху и внизу, при этом они должны быть изогнуты так, чтобы образовалась четверть круга. Располагают их друг за другом по окружности, устанавливая на грани лучей.

Изготавливаем ротор

1. Основания для ротора диаметром 400 мм выпиливают из фанеры толщиной 10 мм. По внешнему радиусу с помощью жидких гвоздей или эпоксидного клея крепят постоянные неодимовые магниты с высокой индуктивностью. Располагают их аналогично цифрам на часовом циферблате (ровно 12 шт) с соблюдением полярности (их рекомендуется промаркировать). Чтобы магниты не сошли со своего места, их временно фиксируют распорками из деревянных клиньев.

2. Второй ротор делают аналогично и симметрично первому. Разница в полярности магнитов – она должна быть противоположной.

Как собрать статор

Статор собирается из 9-ти катушек индуктивности. Должно быть з группы последовательно соединенных катушек (по 3 шт. в группе): конец предыдущей соединяется с началом следующей (конфигурация «звезда»). Располагаются катушки симметрично в вершинах трех треугольников, вписанных в окружность. Намотка выполняется медным проводом 0,51 мм в диаметре (тип – 24 AWG). Необходимо 320 витков. Это позволит получить на выходе генератора напряжение 100 В при 120 об/мин. турбины. Вертикальный ветрогенератор своими руками можно смастерить с различными параметрами выходного напряжения и тока путем уменьшения/увеличения количества витков и диаметра намоточного провода статора. Витки катушек наматываются одинаково. Необходимо соблюдать направление намотки и отмечать ее начало и конец. Поверх наружного витка наносится эпоксидный клей и наматывается в четырех местах изолента – для препятствования разматыванию.

Правила и нюансы соединения катушек

Концы катушек необходимо очистить от лаковой изоляции. Соединения выполняются пайкой. Подготовленные таким образом катушки укладывают на бумажный лист, на который наносят схему их расположения (в соответствии с положением постоянных магнитов ротора). Фиксируют их скотчем. Все свободные поля бумаги (кроме центров катушек) заклеивают стеклотканью, заливая эпоксидную смолу с отвердителем. Выводы обмоток должны располагаться снаружи или внутри статора. Для крепления кронштейна в статоре проделывают отверстия.

Окончательная сборка и установка

На одну ось собираются (сверху – вниз): нижняя опора лопастей, диск с постоянными магнитами (верхнее основание ротора), статор, нижнее основание ротора и ступица. Все составляющие крепятся шпильками к кронштейну. Для хорошего контакта используем болты из нержавеющей стали. Доработав остальные мелочи, получаем готовое устройство. Вертикальный ветряк своими руками следует устанавливать на отрытой местности, там, где сила ветра наибольшая. Желательно, чтобы вблизи не было высоких сооружений. Тогда ветрогенератор будет эффективно вырабатывать электроэнергию, что поможет сэкономить средства.

Ветрогенераторы с вертикальной осью вращения

В этом разделе собраны различные конструкции ветрогенераторов с вертикальной осью вращения, сделанные любителями данного вида ветрогенераторов. Вертикальных ветрогенераторов бывает множество видов и вариаций. Простейшие Савониусы или по простому бочки, и более продвинутые роторы Дарье, которые более оборотистые, но тут каждый вид имеет свои достоинства и недостатки.

Ротор Онипко

Описание ротора Онипко. Что это? Очередной проект для поиска инвесторов или это реально эффективный ветрогенератор

Вертикальный ветрогенератор

Вертикальный ветрогенератор необычной конструкции

Интересная конструкция ветрогенератора, генератор которого сделан из асинхронного двигателя, но генератор сделан с тремя статорами и тройным ротором. так-же необычно вращается двухлопастной ротор с лопастями из поликарбоната.

Ветряк из бочек с откидными лопастями

Ветрогенератор сделанный из жестяных бочек. Генератор сделан из асинхронного двигателя мощностью 2,2кВт, ротор которого переделан на неодимовые магниты. Привод на генератор ременной. Лопасти ветряка откидные с центробежными грузами, выхотя на ветер они раскрываются и закрываются переходя под ветер.

Ветрогенератор из мотор-колеса

Немного фотографий небольшого вертикального ветрогенератора. В качестве генератора здесь использовалось мотор-колесо от скутера, передача крутящегго момента на генератор цепная, соотношение примерно 1:2,5. Размеры ротора 1*1,6метра, высота мачты 9 метров. На среднем ветру этот ветряк выдает до 3А и 17v на зарядку щелочного аккумулятора.

Ветрогенератор для забора воды

Ставшая уже легендарной на просторах рунета конструция этого ветрогенератора, который приводит в движение самодельный насос, а он качает воду из озера. Изначально ветряк должен был заряжать аккумулятор, но слишком малые обороты свели на нет все попытки получения электричества.

Вертикальный ветрогенератор, ротор Угринского

Самодельный ветрогенератор с вертикальной осью вращения и размером ротора 0,75*1,6м. Конструкция лопастей по чертежам ротора Угринского, это улучшенный Савониус по сути, КИЭВ такой конструкции выше. Конструкция сделана из двух блоков с углом 90 градусов, материал фанера и алюминий. Генератор для этого ветряка аксиального типа на постоянных магнитах.

Мощность ветроустановки около 50 ватт на ветре 7-8м/с.

Сомодельный ветрогенератор типа Савониус

Самодельный вертикальный ветрогенератор с размером ротора 1,8*1м. В качестве генератора переделанный автомобильный генератор.

Мощность ветроустановки 60 ватт на ветре 10м/с, это немного, но здесь надо усовершенствовать генератор.

Ветрогенератор вертикальный своими руками


Ветрогенератор вертикальный своими руками Альтернативная энергия на сегодняшний день развивается очень быстрыми темпами. Например, вертикально-осевой ветрогенератор уже не является новинкой. В

О том, мы рассказывали в одном из прошлых материалов. Сегодня вашему вниманию будут представлены модели ВЭУ, построенные пользователями нашего портала. Также мы поделимся полезными советами, которые помогут собрать установку и не допустить при этом ошибок. Строительство ветрогенератора своими руками – задача сложная. Безошибочно справиться с ее решением может далеко не каждый (даже опытный) практик. Впрочем, любая вовремя обнаруженная ошибка может быть исправлена. На то мастеру – голова и руки.

В статье рассмотрены вопросы:

  • Из каких материалов и по каким чертежам можно изготовить лопасти ветрогенератора.
  • Порядок сборки аксиального генератора.
  • Стоит ли переделывать автомобильный генератор под ВЭУ и как это правильно сделать.
  • Как защитить ветрогенератор от бури.
  • На какой высоте устанавливать ветрогенератор.

Изготовление лопастей

Если у вас еще нет опыта в самостоятельном изготовлении винтов для домашней ВЭУ, рекомендуем не искать сложных решений, а воспользоваться простым методом, доказавшим свою эффективность на практике. Заключается он в изготовлении лопастей из обыкновенной канализационной ПВХ трубы. Этот метод прост, доступен и дешев.

Михаил26 Пользователь FORUMHOUSE

Теперь о лопастях: сделал из 160-й рыжей канализационной трубы со вспененным внутренним слоем. Делал по расчету, представленному на фото.

«Рыжая» труба упомянута пользователем не случайно. Именно этот материал лучше держит форму, устойчив к температурным перепадам и дольше служит (в сравнении с серыми трубами ПВХ).

Чаще всего в домашней ветроэнергетике используются трубы диаметром от 160 до 200 мм. С них и следует начинать свои эксперименты.

Форма и конфигурация лопастей – это параметры, которые зависят от диаметра трубы, из которой они изготовлены, от диаметра ветроколеса, от быстроходности рабочего винта и других расчетных характеристик. Чтобы не забивать себе голову аэродинамическими расчетами, вы можете воспользоваться , которую выложил в нашего портала ее автор. Она позволит определить геометрию лопастей, подставляя в расчетную таблицу свои собственные значения (диаметр трубы, быстроходность винта и т. д.).

Михаил26

Приноровился пилить электролобзиком. Получается реально быстро и качественно. Примечание: обязательно ставьте большой свободный ход пилки на лобзик, чтобы пилку не закусывало и не ломало.

Конструкция аксиального генератора

Делая выбор между трехфазным или однофазным генератором, лучше остановить свой выбор на первом варианте. Трехфазный источник тока менее подвержен вибрациям, возникающим из-за неравномерности нагрузки, и позволяет получать постоянную мощность при одинаковых оборотах ротора.

BOB691774 Пользователь FORUMHOUSE

Однофазные генераторы мотать не стоит: испытано и давно проверено на практике. Только на трех фазах можно получить достойные генераторы.

Расчетные параметры генератора, о которых мы рассказывали в нашем предыдущем материале, определяются текущими потребностями в электроэнергии. И чтобы на практике они соответствовали объему вырабатываемой мощности, конструкция аксиального генератора должна отвечать определенным требованиям:

  1. Толщина всех дисков (ротора и статора) должна равняться толщине магнитов.
  2. Оптимальное соотношение катушек и магнитов – 3:4 (на каждые 3 катушки – 4 магнита). На 9 катушек – 12 магнитов (по 6 на каждый диск ротора), на 12 катушек – 16 магнитов и так далее.
  3. Оптимальное расстояние между двумя соседними магнитами, расположенными на одном диске, равно ширине этих магнитов.

Увеличение расстояния между двумя соседними магнитами приведет к неравномерной выработке электроэнергии. Уменьшить это расстояние можно, но лучше, все же, соблюдать оптимальные параметры.

Aleksei2011 Пользователь FORUMHOUSE

Ошибочно делать расстояние между магнитами равным половине ширины магнита. Один человек оказался прав, когда говорил, что расстояние должно быть не меньше ширины магнита.

Если не вникать в скучную теорию, то схема перекрытия катушек аксиального генератора постоянными магнитами на практике должна выглядеть следующим образом.

В каждый момент времени одинаковые полюса магнитов аналогичным образом перекрывают обмотки катушек отдельно взятой фазы.

Aleksei2011

Вот так в реале: всё совпадает с рисунком почти на 100%, только катушки совсем немного отличаются по форме.

Последовательность сборки аксиального генератора рассмотрим на примере устройства, собранного пользователем Aleksei2011 .

Aleksei2011

На этот раз я делаю дисковый аксиальный генератор. Диаметр дисков – 220 мм, магниты – 50*30*10 мм. Всего – 16 магнитов (по 8 штук на дисках). Катушки мотал проводом Ø1.06 мм по 75 витков. Катушек – 12 штук.

Изготовление статора

Как видно на фото, катушки имеют форму, похожую на вытянутую каплю воды. Это делается для того, чтобы направление движения магнитов было перпендикулярным длинным боковым участкам катушки (именно здесь индуцируется максимальная ЭДС).

Если используются круглые магниты, внутренний диаметр катушки должен примерно соответствовать диаметру магнита. Если же используются квадратные магниты, конфигурация витков катушки должна быть построена таким образом, чтобы магниты перекрывали прямые отрезки витков. Установка более длинных магнитов особого смысла не имеет, ведь максимальные значения ЭДС возникают лишь на тех участках проводника, которые расположены перпендикулярно направлению движения магнитного поля.

Изготовление статора начинается с намотки катушек. Катушки проще всего мотать по заранее заготовленному шаблону. Шаблоны бывают самыми разными: от небольших ручных приспособлений до миниатюрных самодельных станков.

Катушки каждой отдельно взятой фазы соединяются между собой последовательно: конец первой катушки соединяется с началом четвертой, конец четвертой – с началом седьмой и т. д.

Напомним, что при соединении фаз по схеме «звезда» концы обмоток (фаз) устройства соединяются в один общий узел, который будет являться нейтралью генератора. При этом три свободных провода (начало каждой фазы) подключаются к трехфазному диодному мосту.

Когда все катушки будут собраны в единую схему, можно готовить форму под заливку статора. После этого погружаем в форму всю электрическую часть и заливаем эпоксидной смолой.

Изготовление ротора для аксиальника

Чаще всего самодельные аксиальные генераторы делают на основе автомобильной ступицы и совместимых с ней тормозных дисков (можно использовать самодельные металлические диски, как это сделал Aleksei2011 ). Схема будет следующей.

В этом случае диаметр статора больше, чем диаметр ротора. Это позволяет прикрепить статор к раме ветрогенератора с помощью металлических шпилек.

Aleksei2011

Шпильки для крепления статора М6 стоят (в количестве 3-х штук). Это исключительно для теста генератора. Впоследствии их будет 6 штук (М8). Я думаю, что для генератора такой мощности этого будет вполне достаточно.

В некоторых случаях диск статора крепится к неподвижной оси генератора. Подобный подход позволяет сделать конструкцию генератора менее габаритной, но принципы работы устройства от этого не меняются.

Противоположные магниты должны быть направлены друг к другу разноименными полюсами: если на первом диске магнит обращен к статору генератора своим южным полюсом «S», то противоположный ему магнит, расположенный на втором диске, должен быть обращен к статору полюсом «N». При этом магниты, расположенные рядом на одном диске, также должны быть сориентированы разнонаправлено.

Сила магнитного поля, которое создают неодимовые магниты, довольно велика. Поэтому регулировать расстояние между дисками статора и ротором генератора следует, используя шпилечно-резьбовое соединение.

Это вариант конструкции, в которой диаметр ротора больше диаметра статора. Статор в этом случае крепится к неподвижной оси устройства.

Также для регулировки расстояния между дисками можно использовать распорные втулки (или шайбы), которые устанавливаются на неподвижную ось генератора.

Расстояние между магнитами и статором должно быть минимальным (1…2 мм). Клеить магниты на диски генератора можно обыкновенным суперклеем. Правильнее всего осуществлять наклейку магнитов, используя заранее заготовленный шаблон (например, из фанеры).

Вот, что показали предварительные испытания генератора, выполненные пользователем Aleksei2011 с помощью шуруповерта: при 310 об/м с устройства было снято 42 вольта (соединение – звездой). С одной фазы получается 22 вольта. Расчетное сопротивление одной фазы – 0.95 Ом. После подключения АКБ шуруповёрт смог раскрутить генератор до 170 об/м, ток зарядки при этом составил 3.1А.

После длительных экспериментов, которые были связаны с модернизацией рабочего винта и другими менее масштабными усовершенствованиями, генератор продемонстрировал свои максимальные характеристики.

Aleksei2011

Наконец, к нам пришёл ветер, и я зафиксировал максимальную мощность ветряка: ветер усилился, а порывы временами достигали 12 – 14м/с. Максимальная зафиксированная мощность – 476 Ватт. При ветре 10м/с ветряк выдаёт примерно 300 Ватт.

Ветроэнергетическая установка из автомобильного генератора

Популярным решением среди людей, практикующих изготовление ВЭУ своими руками, является переделка автомобильного генератора под альтернативные нужды. Несмотря на всю привлекательность подобной затеи, следует отметить, что автомобильный генератор в том виде, в котором он устанавливается на двигатель транспортного средства, довольно проблематично использовать в составе ветроэнергетической установки. Разберемся – почему:

  1. Во-первых, обмотка катушек стандартного автомобильного генератора состоит всего из 5…7 витков. Следовательно, чтобы такой генератор начал давать зарядку АКБ, его ротор необходимо раскрутить примерно до 1200 об/мин.
  2. Во-вторых, магнитная индукция в стандартном автомобильном генераторе возникает благодаря катушке возбуждения, которая встроена в ротор устройства. Чтобы такой генератор смог работать без подключения к дополнительному источнику питания, его необходимо оснастить постоянными магнитами (желательно – неодимовыми) и внести определенные коррективы в обмотку статора.

Михаил26

Переделанный автогенератор (на магниты) имеет право на жизнь. У меня сейчас два таких. На ветре 8 м/с с двухметровыми винтами дают честные 300 Ватт каждый.

Переделка автомобильного генератора под ВЭУ требует определенной сноровки. Поэтому приступать к ней желательно, имея за плечами опыт перемотки асинхронных двигателей или генераторов со стандартным цилиндрическим статором (и те, и другие при желании можно превратить в альтернативную энергетическую установку). Переделка автомобильного генератора имеет свои нюансы. Понять их будет намного проще, если обратиться , которые успели достичь в этой сфере определенных успехов.

Защита кабеля от перекручивания

Как известно, ветер не имеет постоянного направления. И если ваш ветрогенератор будет вращаться вокруг своей оси подобно флюгеру, то без дополнительных мер защиты кабель, идущий от ветрогенератора к другим элементам системы, быстро перекрутится и в течение нескольких дней придет в негодность. Предлагаем вашему вниманию несколько способов защиты от подобных неприятностей.

Способ первый: разъемное соединение

Наиболее простой, но совершенно непрактичный способ защиты заключается в установке разъемного кабельного соединения. Разъем позволяет распутать скрутившийся кабель вручную, отключив ветрогенератор от системы.

w00w00 Пользователь FORUMHOUSE

Я знаю, что некоторые внизу ставят что-то типа штепселя с розеткой. Закрутило кабель – отключил от розетки. Затем – раскрутил и воткнул вилку обратно. И мачту опускать не надо, и токосъёмники не нужны. Я это на форуме по самодельным ветрякам прочитал. Судя по словам автора, все работает и не перекручивает кабель слишком уж часто.

Способ второй: использование жесткого кабеля

Некоторые пользователи советуют подключать к генератору толстые, упругие и жесткие кабели (например, сварочные). Метод, на первый взгляд, ненадежный, но имеет право на жизнь.

user343 Пользователь FORUMHOUSE

Нашел на одном сайте: наш способ защиты заключается в использовании сварочного кабеля с жестким резиновым покрытием. Проблема скрученных проводов в конструкции малых ветровых турбин сильно переоценена, а сварочный кабель #4...#6 имеет особые качества: жесткая резина не дает кабелю скручиваться и препятствует повороту ветряка в одном и том же направлении.

Способ третий: установка токосъемных колец

На наш взгляд, полностью защитить кабель от перекручивания поможет только установка специальных токосъемных колец. Именно такой способ защиты реализовал в конструкции своего ветрогенератора пользователь Михаил 26.

Защита ветрогенератора от бури

Речь идет о защите устройства от ураганов и сильных порывов ветра. На практике она реализуется двумя способами:

  1. Ограничением оборотов ветроколеса с помощью электромагнитного тормоза.
  2. Уводом плоскости вращения винта от прямого воздействия ветрового потока.

Первый способ основан на к ветрогенератору. О нем мы уже рассказывали в одной из предыдущих статей.

Второй способ предполагает установку складывающегося хвоста, позволяющего при номинальной силе ветра направлять винт навстречу ветровому потоку, а во время бури, наоборот – уводить винт из-под ветра.

Защита складыванием хвоста происходит по следующей схеме.

  1. В безветренную погоду хвост расположен немного под наклоном (вниз и в сторону).
  2. При номинальной скорости ветра хвост выпрямляется, а винт становится параллельно воздушному потоку.
  3. Когда скорость ветра превышает номинальные значения (например, 10 м/с), давление ветра на винт становится больше, чем сила, создаваемая весом хвоста. В этот момент хвост начинает складываться, а винт уходит из-под ветра.
  4. Когда скорость ветра достигает критических значений, плоскость вращения винта становится перпендикулярно потоку ветра.

Когда ветер ослабевает, хвост под собственной тяжестью возвращается в исходное положение и поворачивает винт навстречу ветру. Для того чтобы хвост смог вернуться в исходное положение без дополнительных пружин, используется поворотный механизм с наклонным шкворнем (шарниром), который устанавливается на оси поворота хвоста.

Оптимальная площадь хвостового оперения составляет 15%...20% от площади ветроколеса.

Вашему вниманию представлен наиболее распространенный вариант механической защиты ветрогенератора. В том или ином виде он успешно используется на практике пользователями нашего портала.

WatchCat Пользователь FORUMHOUSE

При шторме тормозить винт надо его уводом из-под ветра. У меня, к примеру, при слишком сильном ветре ветряк опрокидывается винтом вверх. Не самый лучший вариант, ведь возврат в рабочее положение сопровождается заметным ударом. Но за десять лет ветряк не сломался.

Несколько слов о правильной установке ветрогенератора

Выбирая место и высоту мачты, которые бы оптимально подошли для установки ветрогенератора, следует ориентироваться на самые разные факторы: рекомендуемая высота, наличие препятствий вблизи ВЭУ, а также собственные наблюдения и замеры.

Для того чтобы рассчитать оптимальную высоту мачты для домашней ВЭУ, необходимо к высоте ближайшего препятствия (дерева, здания и т. д.), которое находится в радиусе 100 метров от мачты ветряка, прибавить еще 10 метров. Таким образом вы получите высоту нижней точки ветроколеса.

Leo2 Пользователь FORUMHOUSE

В США, например, минимально рекомендованная высота мачты для ВЭУ мощностью несколько кВт – 15 м, но чем выше, тем лучше. Нижняя часть ветроколеса должна быть, как минимум, на 10 м выше ближайшего самого высокого препятствия. Конечно, предварительно необходимо обследовать местность и выбрать оптимальную высоту мачты. На глаз это может сделать только очень опытный специалист. Во всех других случаях нужно проводить тщательные замеры в течение года (как минимум).

В процессе установки самодельных ветрогенераторов теория очень часто расходится с практикой, поэтому, в среднем, самодельные мачты имеют высоту от 6 до 12 метров. Основное преимущество самодельных вышек (мачт) заключается в том, что если какие-либо параметры не будут соответствовать вашим потребностям, конструкцию, габариты и высоту установки в любой момент можно изменить.

Перед осуществлением сварочных работ, связанных с ремонтом или модернизацией конструкции, генератор необходимо отключить и снять с мачты. В противном случае под действием сварочных токов постоянные магниты могут выйти из строя (размагнититься).

Богатый опыт пользователей FORUMHOUSE, собран в одном из разделов нашего строительного портала. Если вы всерьез интересуетесь альтернативной энергетикой, рекомендуем прочитать статью, посвященную (батарей). Наверняка, вас заинтересует и небольшое видео об особенностях правильного построения мощной и функциональной системы электроснабжения загородного дома , которая по классической схеме подключается к стандартной трансформаторной подстанции.

Ветер - это бесплатная энергия! Так давайте же её использовать в личных целях. Если создание ВЭС в промышленных масштабах это очень дорого, потому что кроме генератора нужно провести ряд исследований и расчётов, государство не берет на себя такие расходы, а инвесторам в странах бывшего СССР - это, почему-то не вызывает особого интереса. То в частном порядке можно сделать мини-ветряк для собственных нужд. Стоит понимать, что проект перевода вашего дома на альтернативную энергию очень дорогое занятие.

Как уже было сказано: нужно произвести длительные наблюдения и расчёты, чтобы подобрать оптимальное соотношение размеров ветряного колеса и генератора, подходящее к вашему климату, розе ветров и среднегодовой скорости ветра.

Эффективность ветроэлектрической установки в пределах одного региона может отличаться в разы, это связано с тем, что движение ветра зависит не только от климатического пояса, но и от рельефа местности.

Однако вы можете узнать, что такое ветроэнергетика с минимальными затратами собрав бюджетную установку для питания маломощной нагрузки, типа смартфона, лампочек или радиоприёмника. При должном подходе вы можете обеспечить электроэнергией небольшой дом или дачный участок.

Давайте рассмотрим каким образом можно сделать простейшую ветроэлектрическую установку своими руками.

Маломощные ветряки из подручных средств

Компьютерный кулер представляет собой бесколлектроный двигатель, который в своем первоначальном виде не представляет практической ценности.

Его нужно перемотать, так как в оригинале обмотки соединены неподходящим образом. Мотать катушки поочередно:

    По часовой стрелке;

    Против часовой стрелки;

    По часовой стрелке;

    Против часовой стрелки.

Соединять соседние катушки нужно последовательно, а еще лучше мотать одним куском провода переходя от одного паза к другому. Толщину провода в этом случае подбирать произвольно, лучше будет если вы намотаете как можно больше витков, а это возможно при использовании наименее тонким проводом.

Выходное напряжение с такого генератора будет переменным, а его величина будет зависеть от оборотов (скорости ветра), установите диодный мост из диодов Шоттки, чтобы выпрямить его до постоянного, обычные диоды подойдут, но будет хуже, т.к. на них упадёт напряжение от 1 до 2-х вольт.

Лирическое отступление, немного теории

Запомните величина ЭДС равняется:

где L - длина проводника помещенного в магнитное поле; V - скорость вращения магнитного поля;

При модернизации генератора вы можете влиять только на длину проводника, то есть на количество витков каждой из катушек. Количество витков - определяет выходное напряжение, а толщина провода - максимальную токовую нагрузку.

На практике влиять на скорость ветра нельзя. Однако из этой ситуации тоже есть выход, можно, узнав типовую скорость ветра для вашей местности спроектировать подходящий по оборотам винт для ветроэлектрической установки, а также редуктор или ременную передачу, для обеспечения достаточных оборотов для генерации нужного по величине напряжения.

ВАЖНО: Быстрее не значит лучше!!! При слишком большой скорости вращения ветрогенератора сократиться его ресурс, ухудшаться смазочные свойства втулок или подшипников ротора, и он заклинит, а быстрее всего произойдет пробой изоляции обмоток в генераторе

Генератор состоит из:

Увеличиваем мощность генератора из компьютерного кулера

Во-первых, чем больше лопастей и диаметр колеса - тем лучше, поэтому присмотритесь к 120-мм кулерам.

Во-вторых, мы уже сказали, что напряжение зависит и от магнитного поля, дело в том, что промышленные генераторы высокой мощности имеют обмотки возбуждения, а низкой мощности - сильные магниты. В кулере магниты крайне слабые и не позволяют добиться хороших результатов от генератора, да и зазор между ротором и статором весьма велик - порядка 1 мм, и это при и без того слабых магнитах.

Решение этой проблемы кардинально изменить конструкцию генератора. Вернее, от кулера потребуется только крыльчатка, в качестве самого генератора применим моторчик от принтера или любой другой бытовой техники. Наиболее часто встречаются щеточные двигатели с возбуждением от постоянных магнитов.

В результате это будет выглядеть так.

Мощности подобного генератора хватит, чтобы запитать светодиоды, радиоприемник. Для подзарядки телефона его не хватит, телефон будет отображать процесс заряда, но ток будет крайне мал, до 100 Ампер, при ветре 5-10 метров в секунду.

Шаговые двигателя в роли ветрогенератора

Шаговый двигатель очень часто встречается в компьютерной и бытовой технике, в различных проигрывателях, флоппи-дисководах (интересны старые модели 5.25”), принтерах (особенно матричных), сканерах и т.д.

Данные двигатели без переделок могут работать в роли генератора, они представляют собой ротор с постоянными магнитами, и статор с обмотками, типовая схема подключения шагового двигателя в режиме генератора изображена на рисунке.

В схеме установлен линейный стабилизатор на 5 Вольт, типа L7805, что позволит без опасения подключать мобильные телефоны к такому ветряку для их зарядки.

На фото генератор из шагового двигателя с установленными лопастями.

Двигатель в конкретном случае с 4-мя выходными проводами, схема соответственно под него. Двигатель с такими габаритами в режиме генератора выдаёт примерно 2 Вт при слабом ветре (скорость ветра около 3 м/с) и 5 м/с при сильном (до 10 м/с).

Кстати вот аналогичная схема со стабилитроном, вместо L7805. Позволяет заряжать Li-ion батареи.

Доработка самодельного ветряка

Чтобы генератор работал эффективнее нужно сделать ему направляющий хвостовик и закрепить его на мачте подвижно. Тогда при изменении направления ветра - будет изменяться направление ветрогенератора. Тогда возникает следующая проблема - кабель, идущий от генератора к потребителю будет закручиваться вокруг мачты. Чтобы это решить нужно обеспечить подвижный контакт. На Ebay и Aliexpress продаётся готовое решение.

Нижних три провода - неподвижны идут вниз, а верхний пучок проводов - подвижен, внутри установлен скользящий контакт или щеточный механизм. Если у вас нет возможности купить, проявите смекалку, и, вдохновившись решением конструкторов автомобиля Жигули, а именно реализацией подвижного контакта кнопки сигнала на руле и сделайте что-то похожее. Или воспользуйтесь контактной площадкой от электрочайника.

Соединив разъёмы, вы получите подвижный контакт.

Мощный ветрогенератор из подручных средств.

Для получения большей мощности вы можете использовать два варианта:

1. Генератор из шуруповерта (10-50 Вт);

Из шуруповерта понадобиться только моторчик, вариант аналогичен предыдущему, в качестве винта вы можете использовать лопасти от вентилятора, это увеличит итоговую мощность вашей установки.

Вот пример реализации такого проекта:

Обратите внимание как здесь реализована шестеренчатая повышающая передача - вал ветрогенератора расположен в трубе, на его конце расположена шестерня, которая передаёт вращение меньшей шестерне закрепленной на валу двигателя. Повышение оборотов двигателя имеет место и в промышленных ветряных электроустановках. Редуктора применяются повсеместно.

Однако в условиях самоделки изготовить редуктор становиться большой проблемой. Вы можете извлечь редуктор из электроинструмента, он там нужен чтобы понизить высокие обороты на валу коллекторного двигателя в нормальные обороты патрона на дрели, или диска болгарки:

В дрели установлен планетарный редуктор;

    В болгарке установлен угловой редуктор (станет полезным для монтажа некоторых установок и уменьшит нагрузку с хвоста ВЭУ);

    Редуктор от ручной дрели.

Такой вариант самодельного ветрогенератора уже может заряжать 12 В аккумуляторы, однако нужен преобразователь для формирования зарядного тока и напряжения. Эту задачу можно упростить применив автомобильный генератор.

Преимущество такого генератора - возможность использовать его для зарядки автомобильных аккумуляторов, в принципе он для этого и предназначен. Автогенераторы имеют встроенное реле-регулятор напряжения, что избавляет от необходимости покупать дополнительные стабилизаторы или преобразователи.

Однако автолюбители знают, что на низких холостых оборотах, примерно 500-1000 Об/мин мощность такого генератора мала, и он не обеспечивает должного тока для заряда аккумулятора. Это приводит к необходимости подключения к ветроколесу через редуктор или ременную передачу.

Отрегулировать количество оборотов при нормальной для ваших широт скорости ветра можно с помощью подбора передаточного числа либо с помощью правильно спроектированного ветроколеса.

Полезные советы


Пожалуй, самая удобная для повторения конструкция мачты для ветряка - изображена на картинке. Такая мачта растягивается на тросах, закрепленных на держателях в земле, что обеспечивает устойчивость.

Важно: Высота мачты должна быть как можно большей примерно 10 метров. На большей высоте ветер сильнее, потому что для него нет препятствий в виде наземных сооружений, холмов и деревьев. Ни в коем случае не устанавливайте ветрогенератор на крыше своего дома. Резонансные колебания крепежных конструкций могут вызвать разрушение его стен.

Позаботьтесь о надёжности несущей мачты, ведь конструкция ветряка на базе такого генератора значительно утяжеляется и представляет собой уже довольно серьезное решение, которое может осуществлять автономное электроснабжение дачи с минимальным набором электрических приборов. Устройства, которые работают от 220 Вольт можно запитать от инвертора 12-220 В. Самый распространённый вариант такого инвертора - .

Лучше использовать генераторы от дизельных, в т.ч. грузовых автомобилей, ведь они рассчитаны для работы на низких оборотах. В среднем дизельный двигатель крупного грузовика работает в диапазоне оборотов от 300 до 3500 об/мин.

Современные генераторы выдают 12 или 24 Вольт, а ток в 100 Ампер - уже давно стал нормальным. Проведя несложные вычисления можно определить, что такой генератор максимально выдаст вам до 1 кВт мощности, а генератор от жигулей (12 В 40-60 А) 350-500 Вт, что уже довольно приличная цифра.

Каким должно быть ветроколесо для самодельной ВЭУ?

Я упомянул в тексте о том, что ветроколесо должно быть большим и с большим количеством лопастей, на самом деле это не так. Это утверждение было справедливо для тех микро-генераторов, которые не претендуют на звание серьезных электрических машин, а скорее экземпляры для ознакомления и досуга.

На самом деле проектирование, расчёт и создание ветроколеса - это очень сложная задача. Энергия ветра будет использоваться рациональнее, если оно выполнено очень точно и идеально выведен «авиационный» профиль, при этом он должен быть установлен с минимальным углом к плоскости вращения колеса.

Реальная мощность ветроколес с одинаковым диаметром и разным количеством лопастей - одинаково, разница лишь в скорости их вращения. Чем меньше крыльев - тем больше оборотов в минуту, при том же ветре и диаметре. Если вы собираетесь добиться максимальных оборотов вы должны максимально точно смонтировать крылья с минимальным углом к плоскости их вращения.

Ознакомьтесь с таблицей из книги 1956 года «Самодельная ветроэлектростанция» изд. ДОСААФ Москва. На ней показана связь диаметра колеса, мощности и оборотов.

В домашних условиях эти теоретические выкладки дают мало толку, любители делают ветроколеса из подручных средств, в ход идёт:

  • Листы металла;

    Пластиковые канализационные трубы.

Собрать своими руками быстроходное 2-4 лопастное ветроколесо можно из канализационных труб, кроме них нужна ножовка или любой другой режущий инструмент. Использование этих труб обусловлено их формой, после обрезки они имеют вогнутую форму, что обеспечивает высокую отзывчивость к потокам воздуха.

После обрезки их закрепляют с помощью БОЛТОВ на металлической, текстолитовой или фанерной болванке. Если вы собрались делать её из фанеры - лучше переклейте и скрутите саморезами с обеих сторон несколько слоев фанеры, тогда у вас получится добиться жесткости.

Вот идея двух лопастной цельной крыльчатки для генератора из шагового двигателя.

Выводы

Вы можете сделать ветроэлектрическую установку начиная от малых мощностей - единиц Ватт, для питания отдельных светодиодных светильников, маячков и мелкой техники, до хороших значений мощности в единицах киловатт, накапливать энергию в аккумуляторе, использовать её в исходном виде или преобразовывать до 220 Вольт. Стоимость такого проекта будет зависеть от ваших потребностей, пожалуй, самым дороги элементом является мачта и аккумуляторы, может оказаться в пределах 300-500 долларов.